Self-supervised learning with self-distillation on COVID-19 medical image classification

计算机科学 人工智能 自编码 深度学习 2019年冠状病毒病(COVID-19) 机器学习 编码器 模式识别(心理学) 学习迁移 传染病(医学专业) 疾病 医学 操作系统 病理
作者
Zhiyong Tan,Yuhai Yu,Jiana Meng,Shuang Liu,Wei Li
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:243: 107876-107876 被引量:5
标识
DOI:10.1016/j.cmpb.2023.107876
摘要

Currently, COVID-19 is a highly infectious disease that can be clinically diagnosed based on diagnostic radiology. Deep learning is capable of mining the rich information implied in inpatient imaging data and accomplishing the classification of different stages of the disease process. However, a large amount of training data is essential to train an excellent deep-learning model. Unfortunately, due to factors such as privacy and labeling difficulties, annotated data for COVID-19 is extremely scarce, which encourages us to propose a more effective deep learning model that can effectively assist specialist physicians in COVID-19 diagnosis.In this study,we introduce Masked Autoencoder (MAE) for pre-training and fine-tuning directly on small-scale target datasets. Based on this, we propose Self-Supervised Learning with Self-Distillation on COVID-19 medical image classification (SSSD-COVID). In addition to the reconstruction loss computation on the masked image patches, SSSD-COVID further performs self-distillation loss calculations on the latent representation of the encoder and decoder outputs. The additional loss calculation can transfer the knowledge from the global attention of the decoder to the encoder which acquires only local attention.Our model achieves 97.78 % recognition accuracy on the SARS-COV-CT dataset containing 2481 images and is further validated on the COVID-CT dataset containing 746 images, which achieves 81.76 % recognition accuracy. Further introduction of external knowledge resulted in experimental accuracies of 99.6% and 95.27 % on these two datasets, respectively.SSSD-COVID can obtain good results on the target dataset alone, and when external information is introduced, the performance of the model can be further improved to significantly outperform other models.Overall, the experimental results show that our method can effectively mine COVID-19 features from rare data and can assist professional physicians in decision-making to improve the efficiency of COVID-19 disease detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LL完成签到,获得积分10
刚刚
科目三应助老谢医生采纳,获得10
1秒前
悲凉的台灯完成签到 ,获得积分10
1秒前
yhgz完成签到,获得积分10
2秒前
阿敬完成签到,获得积分10
2秒前
爆米花应助伊斯塔战灵采纳,获得10
3秒前
4秒前
星辰轨迹完成签到,获得积分10
12秒前
FF完成签到 ,获得积分10
15秒前
款解耦完成签到 ,获得积分10
18秒前
Albert完成签到,获得积分10
21秒前
22秒前
22秒前
shiqiang mu应助Selonfer采纳,获得10
22秒前
22秒前
23秒前
CC发布了新的文献求助10
25秒前
英吉利25发布了新的文献求助10
28秒前
柯一一应助AP不会写文章采纳,获得10
30秒前
31秒前
32秒前
穆佳琦完成签到,获得积分10
34秒前
Jane完成签到 ,获得积分10
35秒前
一屿发布了新的文献求助30
35秒前
柯一一应助CC采纳,获得30
35秒前
贪玩的万仇完成签到,获得积分10
36秒前
lrcty98完成签到 ,获得积分10
36秒前
落单发布了新的文献求助10
37秒前
严尔风完成签到,获得积分10
38秒前
40秒前
望十五月完成签到,获得积分10
40秒前
Pises完成签到,获得积分10
42秒前
杰桑的西地那非完成签到,获得积分10
42秒前
qiqi应助幽默尔蓝采纳,获得10
43秒前
明理小土豆完成签到,获得积分10
43秒前
1111完成签到,获得积分20
44秒前
敏er完成签到,获得积分10
45秒前
45秒前
yangshu发布了新的文献求助10
46秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Fire Protection Handbook, 21st Edition volume1和volume2 360
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3902514
求助须知:如何正确求助?哪些是违规求助? 3447282
关于积分的说明 10848140
捐赠科研通 3172537
什么是DOI,文献DOI怎么找? 1752936
邀请新用户注册赠送积分活动 847463
科研通“疑难数据库(出版商)”最低求助积分说明 789993