亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prior CT Improves Deep Learning for Malignancy Risk Estimation of Screening-detected Pulmonary Nodules

医学 恶性肿瘤 肺癌 结核(地质) 肺癌筛查 接收机工作特性 放射科 癌症 核医学 内科学 生物 古生物学
作者
Kiran Vaidhya Venkadesh,Tajwar Abrar Aleef,Ernst T. Scholten,Zaigham Saghir,Mario Silva,Nicola Sverzellati,Ugo Pastorino,Bram van Ginneken,Mathias Prokop,Colin Jacobs
出处
期刊:Radiology [Radiological Society of North America]
卷期号:308 (2) 被引量:12
标识
DOI:10.1148/radiol.223308
摘要

Background Prior chest CT provides valuable temporal information (eg, changes in nodule size or appearance) to accurately estimate malignancy risk. Purpose To develop a deep learning (DL) algorithm that uses a current and prior low-dose CT examination to estimate 3-year malignancy risk of pulmonary nodules. Materials and Methods In this retrospective study, the algorithm was trained using National Lung Screening Trial data (collected from 2002 to 2004), wherein patients were imaged at most 2 years apart, and evaluated with two external test sets from the Danish Lung Cancer Screening Trial (DLCST) and the Multicentric Italian Lung Detection Trial (MILD), collected in 2004-2010 and 2005-2014, respectively. Performance was evaluated using area under the receiver operating characteristic curve (AUC) on cancer-enriched subsets with size-matched benign nodules imaged 1 and 2 years apart from DLCST and MILD, respectively. The algorithm was compared with a validated DL algorithm that only processed a single CT examination and the Pan-Canadian Early Lung Cancer Detection Study (PanCan) model. Results The training set included 10 508 nodules (422 malignant) in 4902 trial participants (mean age, 64 years ± 5 [SD]; 2778 men). The size-matched external test sets included 129 nodules (43 malignant) and 126 nodules (42 malignant). The algorithm achieved AUCs of 0.91 (95% CI: 0.85, 0.97) and 0.94 (95% CI: 0.89, 0.98). It significantly outperformed the DL algorithm that only processed a single CT examination (AUC, 0.85 [95% CI: 0.78, 0.92; P = .002]; and AUC, 0.89 [95% CI: 0.84, 0.95; P = .01]) and the PanCan model (AUC, 0.64 [95% CI: 0.53, 0.74; P < .001]; and AUC, 0.63 [95% CI: 0.52, 0.74; P < .001]). Conclusion A DL algorithm using current and prior low-dose CT examinations was more effective at estimating 3-year malignancy risk of pulmonary nodules than established models that only use a single CT examination. Clinical trial registration nos. NCT00047385, NCT00496977, NCT02837809 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Horst and Nishino in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
平淡安阳发布了新的文献求助10
10秒前
万能图书馆应助平淡安阳采纳,获得10
18秒前
许三问完成签到 ,获得积分0
21秒前
卡琳完成签到 ,获得积分10
24秒前
34秒前
音悦台完成签到,获得积分20
47秒前
55秒前
59秒前
1分钟前
科研的熊完成签到,获得积分10
1分钟前
结实凌瑶完成签到 ,获得积分10
1分钟前
涛涛完成签到,获得积分20
1分钟前
烟花应助Chany采纳,获得10
1分钟前
赘婿应助ahu采纳,获得30
1分钟前
1分钟前
1分钟前
ahu发布了新的文献求助30
1分钟前
2分钟前
liangyiteng完成签到 ,获得积分10
2分钟前
诗亭发布了新的文献求助10
2分钟前
xinqianying发布了新的文献求助10
2分钟前
彭于晏应助等待的期待采纳,获得10
2分钟前
嘻嘻皮完成签到,获得积分10
2分钟前
万能图书馆应助嘻嘻皮采纳,获得10
2分钟前
2分钟前
2分钟前
仁者无惧完成签到 ,获得积分10
2分钟前
Lucas应助诗亭采纳,获得30
2分钟前
celia关注了科研通微信公众号
2分钟前
感动鞋垫发布了新的文献求助10
2分钟前
科研通AI5应助XH采纳,获得30
2分钟前
2分钟前
2分钟前
celia发布了新的文献求助10
2分钟前
jyy完成签到,获得积分10
3分钟前
李爱国应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
雪梅完成签到,获得积分10
3分钟前
情怀应助Evooolet采纳,获得10
3分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Towards a spatial history of contemporary art in China 400
Ecology, Socialism and the Mastery of Nature: A Reply to Reiner Grundmann 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847640
求助须知:如何正确求助?哪些是违规求助? 3390328
关于积分的说明 10561358
捐赠科研通 3110626
什么是DOI,文献DOI怎么找? 1714425
邀请新用户注册赠送积分活动 825231
科研通“疑难数据库(出版商)”最低求助积分说明 775390