METI: Deep profiling of tumor ecosystems by integrating cell morphology and spatial transcriptomics

反褶积 转录组 计算生物学 生物 可解释性 空间分析 细胞 基因 计算机科学 基因表达 人工智能 遗传学 地理 算法 遥感
作者
Jiahui Jiang,Yunhe Liu,Jiang‐Jiang Qin,Jingjing Wu,Jianfeng Chen,Melissa Pool Pizzi,Rossana Lazcano Segura,Kohei Yamashita,Zhiyuan Xu,Guangsheng Pei,Kyung Serk Cho,Yanshuo Chu,Ansam Sinjab,Fuduan Peng,Guangchun Han,Ruiping Wang,Xinmiao Yan,Enyu Dai,Yibo Dai,Mingyao Li,P. Andrew Futreal,Anirban Maitra,Alexander J. Lazar,Xiangdong Cheng,Humam Kadara,Jaffer A. Ajani,Amir A. Jazaeri,Jianjun Gao,Jian Hu,Linghua Wang
标识
DOI:10.1101/2023.10.06.561287
摘要

Abstract The recent advance of spatial transcriptomics (ST) technique provides valuable insights into the organization and interactions of cells within the tumor microenvironment (TME). While various analytical tools have been developed for tasks such as spatial clustering, spatially variable gene identification, and cell type deconvolution, most of them are general methods lacking consideration of histological features in spatial data analysis. This limitation results in reduced performance and interpretability of their results when studying the TME. Here, we present a computational framework named, M orphology- E nhanced Spatial T ranscriptome Analysis Integrator (METI) to address this gap. METI is an end-to-end framework capable of spatial mapping of both cancer cells and various TME cell components, robust stratification of cell type and transcriptional states, and cell co-localization analysis. By integrating both spatial transcriptomics, cell morphology and curated gene signatures, METI enhances our understanding of the molecular landscape and cellular interactions within the tissue, facilitating detailed investigations of the TME and its functional implications. The performance of METI has been evaluated on ST data generated from various tumor tissues, including gastric, lung, and bladder cancers, as well as premalignant tissues. Across all these tissues and conditions, METI has demonstrated robust performance with consistency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助小半个菠萝采纳,获得10
1秒前
淡然冬灵发布了新的文献求助10
1秒前
酷酷小凡发布了新的文献求助10
3秒前
大模型应助殷勤的马里奥采纳,获得10
4秒前
善良的书本完成签到,获得积分10
4秒前
Beth完成签到,获得积分10
6秒前
ZHANGZHANG完成签到,获得积分20
6秒前
张帅完成签到,获得积分10
7秒前
ding应助酷酷小凡采纳,获得10
7秒前
答辩完成签到,获得积分10
8秒前
9秒前
11秒前
12秒前
12秒前
罗sir发布了新的文献求助10
12秒前
PLAGH221完成签到,获得积分10
14秒前
木野狐完成签到,获得积分10
14秒前
15秒前
英俊白莲完成签到,获得积分10
15秒前
21完成签到,获得积分10
16秒前
木野狐发布了新的文献求助10
17秒前
钟爱完成签到,获得积分10
17秒前
聆听雨完成签到,获得积分10
17秒前
yasan发布了新的文献求助10
17秒前
ED应助上电不冒烟采纳,获得10
18秒前
隐形曼青应助英俊白莲采纳,获得10
18秒前
CoCoco完成签到 ,获得积分10
19秒前
20秒前
研友_59AB85发布了新的文献求助10
21秒前
22秒前
岚一完成签到,获得积分20
23秒前
稳重的小刺猬完成签到,获得积分10
24秒前
24秒前
cyw完成签到,获得积分20
25秒前
在水一方应助研友_59AB85采纳,获得10
25秒前
26秒前
27秒前
旺仔完成签到,获得积分20
27秒前
杨知意发布了新的文献求助10
27秒前
xy完成签到 ,获得积分10
28秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Oxford Picture Dictionary 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808902
求助须知:如何正确求助?哪些是违规求助? 3353628
关于积分的说明 10366242
捐赠科研通 3069900
什么是DOI,文献DOI怎么找? 1685835
邀请新用户注册赠送积分活动 810743
科研通“疑难数据库(出版商)”最低求助积分说明 766320