FFMAVP: a new classifier based on feature fusion and multitask learning for identifying antiviral peptides and their subclasses

计算机科学 人工智能 分类器(UML) 人工神经网络 机器学习 多任务学习 特征(语言学) 深度学习 模式识别(心理学) 任务(项目管理) 工程类 语言学 哲学 系统工程
作者
Ruifen Cao,Weiling Hu,Pi-Jing Wei,Yun Ding,Yannan Bin,Chun-Hou Zheng
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (6)
标识
DOI:10.1093/bib/bbad353
摘要

Antiviral peptides (AVPs) are widely found in animals and plants, with high specificity and strong sensitivity to drug-resistant viruses. However, due to the great heterogeneity of different viruses, most of the AVPs have specific antiviral activities. Therefore, it is necessary to identify the specific activities of AVPs on virus types. Most existing studies only identify AVPs, with only a few studies identifying subclasses by training multiple binary classifiers. We develop a two-stage prediction tool named FFMAVP that can simultaneously predict AVPs and their subclasses. In the first stage, we identify whether a peptide is AVP or not. In the second stage, we predict the six virus families and eight species specifically targeted by AVPs based on two multiclass tasks. Specifically, the feature extraction module in the two-stage task of FFMAVP adopts the same neural network structure, in which one branch extracts features based on amino acid feature descriptors and the other branch extracts sequence features. Then, the two types of features are fused for the following task. Considering the correlation between the two tasks of the second stage, a multitask learning model is constructed to improve the effectiveness of the two multiclass tasks. In addition, to improve the effectiveness of the second stage, the network parameters trained through the first-stage data are used to initialize the network parameters in the second stage. As a demonstration, the cross-validation results, independent test results and visualization results show that FFMAVP achieves great advantages in both stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
11完成签到,获得积分10
3秒前
阳光山槐发布了新的文献求助30
4秒前
yangxm完成签到,获得积分20
4秒前
小小完成签到,获得积分10
5秒前
5秒前
水博士完成签到,获得积分10
5秒前
科研通AI5应助Liangyu采纳,获得30
6秒前
6秒前
6秒前
7秒前
开心的幻柏完成签到 ,获得积分10
7秒前
8秒前
9秒前
852应助高大诗筠采纳,获得10
9秒前
xxxHolic41完成签到,获得积分10
9秒前
尼古拉斯发布了新的文献求助10
10秒前
wendong发布了新的文献求助30
10秒前
11秒前
坚强怀绿完成签到,获得积分10
11秒前
张靖超发布了新的文献求助10
13秒前
科研打工人完成签到,获得积分10
14秒前
在水一方应助赤墨采纳,获得30
14秒前
pluto应助cha236采纳,获得10
15秒前
书生发布了新的文献求助10
15秒前
15秒前
啦啦啦完成签到,获得积分10
16秒前
16秒前
科研通AI5应助Jia采纳,获得10
17秒前
医学僧发布了新的文献求助10
18秒前
尼古拉斯完成签到,获得积分10
18秒前
橙留香关注了科研通微信公众号
18秒前
脑洞疼应助派大星采纳,获得10
19秒前
19秒前
Carolna发布了新的文献求助10
20秒前
wwwwwnnnnn发布了新的文献求助10
21秒前
champcen发布了新的文献求助10
22秒前
23秒前
韩野完成签到,获得积分10
23秒前
23秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Routledge Handbook of Language and Intercultural Communication 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826719
求助须知:如何正确求助?哪些是违规求助? 3369009
关于积分的说明 10453805
捐赠科研通 3088598
什么是DOI,文献DOI怎么找? 1699232
邀请新用户注册赠送积分活动 817281
科研通“疑难数据库(出版商)”最低求助积分说明 770157