Generative Adversarial Network with Robust Discriminator Through Multi-Task Learning for Low-Dose CT Denoising

鉴别器 计算机科学 对抗制 生成对抗网络 人工智能 任务(项目管理) 降噪 图像去噪 计算机视觉 深度学习 模式识别(心理学) 机器学习 工程类 探测器 电信 系统工程
作者
Sunggu Kyung,Jongjun Won,Seongyong Pak,Sunwoo Kim,Sangyoon Lee,Kanggil Park,Gil-Sun Hong,Namkug Kim
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tmi.2024.3449647
摘要

Reducing the dose of radiation in computed tomography (CT) is vital to decreasing secondary cancer risk. However, the use of low-dose CT (LDCT) images is accompanied by increased noise that can negatively impact diagnoses. Although numerous deep learning algorithms have been developed for LDCT denoising, several challenges persist, including the visual incongruence experienced by radiologists, unsatisfactory performances across various metrics, and insufficient exploration of the networks' robustness in other CT domains. To address such issues, this study proposes three novel accretions. First, we propose a generative adversarial network (GAN) with a robust discriminator through multi-task learning that simultaneously performs three vision tasks: restoration, image-level, and pixel-level decisions. The more multi-tasks that are performed, the better the denoising performance of the generator, which means multi-task learning enables the discriminator to provide more meaningful feedback to the generator. Second, two regulatory mechanisms, restoration consistency (RC) and non-difference suppression (NDS), are introduced to improve the discriminator's representation capabilities. These mechanisms eliminate irrelevant regions and compare the discriminator's results from the input and restoration, thus facilitating effective GAN training. Lastly, we incorporate residual fast Fourier transforms with convolution (Res-FFT-Conv) blocks into the generator to utilize both frequency and spatial representations. This approach provides mixed receptive fields by using spatial (or local), spectral (or global), and residual connections. Our model was evaluated using various pixel- and feature-space metrics in two denoising tasks. Additionally, we conducted visual scoring with radiologists. The results indicate superior performance in both quantitative and qualitative measures compared to state-of-the-art denoising techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助水芸采纳,获得10
刚刚
嘻嘻哈哈完成签到,获得积分10
1秒前
香蕉觅云应助熊熊采纳,获得10
1秒前
1秒前
Ruby发布了新的文献求助10
1秒前
归尘发布了新的文献求助10
1秒前
2秒前
mingxuan完成签到,获得积分10
2秒前
zhanglongquan发布了新的文献求助10
2秒前
望仔发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
Richard发布了新的文献求助10
3秒前
脆皮发布了新的文献求助10
3秒前
fuyuhaoy完成签到,获得积分10
4秒前
hhan发布了新的文献求助10
4秒前
星辰大海应助略略略采纳,获得10
5秒前
任小萱完成签到,获得积分10
5秒前
5秒前
热塑性哈士奇完成签到,获得积分10
5秒前
无奈行恶应助wcywd采纳,获得20
5秒前
Lucas应助soong采纳,获得10
6秒前
6秒前
trx发布了新的文献求助10
6秒前
6秒前
漂流的云朵完成签到,获得积分10
7秒前
小二郎应助旦旦采纳,获得10
7秒前
7秒前
Hedy完成签到,获得积分10
7秒前
大个应助迷人的帅哥采纳,获得10
7秒前
阿拉斯加发布了新的文献求助10
7秒前
wan完成签到,获得积分10
8秒前
缓慢如南应助missionary采纳,获得10
8秒前
9秒前
9秒前
又声完成签到,获得积分10
9秒前
Archy发布了新的文献求助10
9秒前
Mzh发布了新的文献求助10
9秒前
10秒前
hhan完成签到,获得积分10
10秒前
平安喜乐完成签到,获得积分10
10秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3977168
求助须知:如何正确求助?哪些是违规求助? 3521380
关于积分的说明 11207629
捐赠科研通 3258296
什么是DOI,文献DOI怎么找? 1799006
邀请新用户注册赠送积分活动 878067
科研通“疑难数据库(出版商)”最低求助积分说明 806744