Generative Adversarial Network With Robust Discriminator Through Multi-Task Learning for Low-Dose CT Denoising

鉴别器 计算机科学 对抗制 生成对抗网络 人工智能 任务(项目管理) 降噪 图像去噪 计算机视觉 深度学习 模式识别(心理学) 机器学习 工程类 探测器 电信 系统工程
作者
Sunggu Kyung,Jongjun Won,Seongyong Pak,Sunwoo Kim,Sangyoon Lee,Kanggil Park,Gil-Sun Hong,Namkug Kim
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:44 (1): 499-518 被引量:8
标识
DOI:10.1109/tmi.2024.3449647
摘要

Reducing the dose of radiation in computed tomography (CT) is vital to decreasing secondary cancer risk. However, the use of low-dose CT (LDCT) images is accompanied by increased noise that can negatively impact diagnoses. Although numerous deep learning algorithms have been developed for LDCT denoising, several challenges persist, including the visual incongruence experienced by radiologists, unsatisfactory performances across various metrics, and insufficient exploration of the networks' robustness in other CT domains. To address such issues, this study proposes three novel accretions. First, we propose a generative adversarial network (GAN) with a robust discriminator through multi-task learning that simultaneously performs three vision tasks: restoration, image-level, and pixel-level decisions. The more multi-tasks that are performed, the better the denoising performance of the generator, which means multi-task learning enables the discriminator to provide more meaningful feedback to the generator. Second, two regulatory mechanisms, restoration consistency (RC) and non-difference suppression (NDS), are introduced to improve the discriminator's representation capabilities. These mechanisms eliminate irrelevant regions and compare the discriminator's results from the input and restoration, thus facilitating effective GAN training. Lastly, we incorporate residual fast Fourier transforms with convolution (Res-FFT-Conv) blocks into the generator to utilize both frequency and spatial representations. This approach provides mixed receptive fields by using spatial (or local), spectral (or global), and residual connections. Our model was evaluated using various pixel- and feature-space metrics in two denoising tasks. Additionally, we conducted visual scoring with radiologists. The results indicate superior performance in both quantitative and qualitative measures compared to state-of-the-art denoising techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
FF完成签到,获得积分10
1秒前
李爱国应助魁梧的含玉采纳,获得10
1秒前
2秒前
whatsup发布了新的文献求助10
3秒前
无花果应助包容煎饼采纳,获得10
3秒前
4秒前
思源应助无限幻枫采纳,获得10
4秒前
FF发布了新的文献求助10
5秒前
徐什么宝发布了新的文献求助30
5秒前
5秒前
6秒前
6秒前
7秒前
鸣蜩阿六发布了新的文献求助10
7秒前
7秒前
科研通AI6应助Ana采纳,获得10
8秒前
8秒前
甜美的尔岚完成签到 ,获得积分10
8秒前
充电宝应助杨杨采纳,获得10
9秒前
SciGPT应助淡然元珊采纳,获得10
10秒前
无语大王完成签到,获得积分10
10秒前
fybd88应助科研通管家采纳,获得20
11秒前
沉默碧空发布了新的文献求助10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
核桃应助科研通管家采纳,获得10
11秒前
大胆砖头完成签到 ,获得积分10
11秒前
12秒前
科目三应助科研通管家采纳,获得10
12秒前
华仔应助科研通管家采纳,获得10
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
12秒前
英姑应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
科研华完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5400843
求助须知:如何正确求助?哪些是违规求助? 4519965
关于积分的说明 14077313
捐赠科研通 4432889
什么是DOI,文献DOI怎么找? 2433865
邀请新用户注册赠送积分活动 1426087
关于科研通互助平台的介绍 1404679