A Lightweight Convolutional Neural Network-Reformer Model for Efficient Epileptic Seizure Detection

卷积神经网络 癫痫 癫痫发作 计算机科学 人工神经网络 人工智能 模式识别(心理学) 神经科学 心理学
作者
Haozhou Cui,Xiangwen Zhong,Haotian Li,Chuanyu Li,Xingchen Dong,Dezan Ji,Landi He,Weidong Zhou
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:34 (12) 被引量:2
标识
DOI:10.1142/s0129065724500655
摘要

A real-time and reliable automatic detection system for epileptic seizures holds significant value in assisting physicians with rapid diagnosis and treatment of epilepsy. Aiming to address this issue, a novel lightweight model called Convolutional Neural Network-Reformer (CNN-Reformer) is proposed for seizure detection on long-term EEG. The CNN-Reformer consists of two main parts: the Data Reshaping (DR) module and the Efficient Attention and Concentration (EAC) module. This framework reduces network parameters while retaining effective feature extraction of multi-channel EEGs, thereby improving model computational efficiency and real-time performance. Initially, the raw EEG signals undergo Discrete Wavelet Transform (DWT) for signal filtering, and then fed into the DR module for data compression and reshaping while preserving local features. Subsequently, these local features are sent to the EAC module to extract global features and perform categorization. Post-processing involving sliding window averaging, thresholding, and collar techniques is further deployed to reduce the false detection rate (FDR) and improve detection performance. On the CHB-MIT scalp EEG dataset, our method achieves an average sensitivity of 97.57%, accuracy of 98.09%, and specificity of 98.11% at segment-based level, and a sensitivity of 96.81%, along with FDR of 0.27/h, and latency of 17.81 s at the event-based level. On the SH-SDU dataset we collected, our method yielded segment-based sensitivity of 94.51%, specificity of 92.83%, and accuracy of 92.81%, along with event-based sensitivity of 94.11%. The average testing time for 1[Formula: see text]h of multi-channel EEG signals is 1.92[Formula: see text]s. The excellent results and fast computational speed of the CNN-Reformer model demonstrate its potential for efficient seizure detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小许同学完成签到,获得积分10
1秒前
小星星完成签到 ,获得积分10
1秒前
多宝完成签到,获得积分10
2秒前
2秒前
华仔应助lllkkk采纳,获得10
2秒前
janie发布了新的文献求助10
2秒前
Young完成签到,获得积分10
3秒前
3秒前
曙光森林完成签到,获得积分10
3秒前
3秒前
彩色的过客完成签到,获得积分10
3秒前
JL完成签到,获得积分10
4秒前
可爱的远望关注了科研通微信公众号
4秒前
俏皮的芝麻完成签到,获得积分10
4秒前
梦醒今宵完成签到,获得积分10
5秒前
开心不评完成签到 ,获得积分10
6秒前
彼岸完成签到,获得积分10
6秒前
玉玉完成签到,获得积分10
7秒前
A_Caterpillar完成签到,获得积分10
7秒前
务实静槐完成签到,获得积分10
7秒前
亿眼万年完成签到,获得积分10
7秒前
八格牙路完成签到,获得积分10
7秒前
8秒前
ni发布了新的文献求助30
8秒前
king完成签到,获得积分10
8秒前
woxiangbiye完成签到,获得积分10
8秒前
Zll发布了新的文献求助10
8秒前
钰宁发布了新的文献求助10
8秒前
温暖芷文完成签到,获得积分10
9秒前
缺缺完成签到,获得积分10
9秒前
元宵宵完成签到,获得积分10
11秒前
青松果完成签到,获得积分10
12秒前
kkkklo完成签到,获得积分10
12秒前
wu_shang完成签到,获得积分10
12秒前
Ambition完成签到 ,获得积分10
13秒前
小岚花完成签到 ,获得积分10
13秒前
xtt完成签到,获得积分10
13秒前
woxiangbiye发布了新的文献求助10
13秒前
14秒前
huo完成签到,获得积分10
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808241
求助须知:如何正确求助?哪些是违规求助? 3352939
关于积分的说明 10362041
捐赠科研通 3069095
什么是DOI,文献DOI怎么找? 1685376
邀请新用户注册赠送积分活动 810433
科研通“疑难数据库(出版商)”最低求助积分说明 766150