911 Anti-VEGF therapy improves EGFR-vIII-CAR-T cell delivery and efficacy in syngeneic glioblastoma models in mice

癌症研究 嵌合抗原受体 医学 免疫疗法 肿瘤微环境 CD8型 抗原 免疫系统 免疫学 肿瘤细胞
作者
Xinyue Dong,Jun Ren,Zohreh Amoozgar,Meenal Datta,Somin Lee,Sylvie Roberge,Mark Duquette,Dai Fukumura,Rakesh K. Jain
标识
DOI:10.1136/jitc-2022-sitc2022.0911
摘要

Background

Chimeric antigen receptor (CAR)-T cells have revolutionized treatment of multiple types of hematological malignancies, but have shown limited efficacy in patients with glioblastoma (GBM) or other solid tumors. This may be largely due to the immunosuppressive tumor microenvironment (TME) that compromises the delivery and anti-tumor activity of CAR-T cells. We previously showed that blocking VEGF (vascular endothelial growth factor) signaling can normalize tumor vessels in murine and human tumors, including GBM, breast, liver, and rectal carcinomas. Moreover, we demonstrated that vascular normalization can improve the delivery of CD8+ T cells and efficacy of immunotherapy in breast cancer models in mice. In fact, the US FDA has approved 7 different combinations of anti-VEGF drugs and immune-checkpoint blockers for liver, kidney, lung and endometrial cancers in the past 3 years.1-25 Here we tested the hypothesis that anti-VEGF therapy can improve the delivery and efficacy of CAR-T cells in immunocompetent mice bearing orthotopic GBM tumors

Methods

We engineered two syngeneic mouse GBM cell lines (CT2A and GSC005) to express EGFRvIII – one of the most common neoantigens in human GBM – and CAR T cells to recognize EGFRvIII. We tested our CAR T cells in orthotopic GBMs for their efficacy in recognizing, and killing tumor cells, and the survival advantage when tumor vessels are normalized.

Results

We found that treatment with the anti-mouse VEGF antibody (B20) improved CAR-T cell infiltration and distribution throughout the GBM TME, delayed tumor growth, and prolonged survival of GBM-bearing mice compared to EGFRvIII-CAR-T cell therapy alone (figure 1).

Conclusions

Our study provides a strategy to overcome major challenges in CAR-T cell therapy in GBM by: (i) increasing the CAR-T cell infiltration, intratumoral distribution, and activation in murine GBM models, and (ii) reprograming TME by increasing the number and activation of endogenous effector T cells, resulting in improved anti-tumor efficacy of CAR-T therapy in two GBM mouse models. Given that anti-VEGF therapies have been approved for a number of solid tumors, including GBM, our study provides mechanistic insights and compelling preclinical data in support of testing the combination of vascular normalizing agents and CAR-T therapies in GBM patients. Furthermore, this approach may also improve CAR-T therapy of other solid tumors that share similar TME features as well as for other cell-based therapies using autologous or allogenic immune cells (e.g., NK cells, macrophages).

References

Young RM, Engel NW, Uslu U, Wellhausen N & June CH. Next-Generation CAR T-cell Therapies. Cancer Discov 2022;12:1625–1633, doi:10.1158/2159-8290.Cd-21-1683. Rafiq S, Hackett CS & Brentjens RJ. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol 2020;17, 147–167, doi:10.1038/s41571-019-0297-y. Brown CE. et al. Regression of glioblastoma after chimeric antigen receptor T-Cell Therapy. N Engl J Med 375, 2561–2569, doi:10.1056/NEJMoa1610497 (2016). O9Rourke DM, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med 2017;9, doi:10.1126/scitranslmed.aaa0984. Good CR, et al. An NK-like CAR T cell transition in CAR T cell dysfunction. Cell 2021;184, 6081–6100.e6026, doi:10.1016/j.cell.2021.11.016. Johnson L A, et al. Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma. Sci Transl Med 2015;7, 275ra222, doi:10.1126/scitranslmed.aaa4963. Huang Y, et al. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci U S A 2012;109:17561–17566, doi:10.1073/pnas.1215397109. Fukumura D, Kloepper J, Amoozgar Z, Duda DG & Jain RK. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol 2018;15:325–340, doi:10.1038/nrclinonc.2018.29. Shrimali RK, et al. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res 2010;70, 6171–6180, doi:10.1158/0008-5472.Can-10-0153. 10. Amoozgar Z, et al. Targeting Treg cells with GITR activation alleviates resistance to immunotherapy in murine glioblastomas. Nat Commun 2021;12, 2582, doi:10.1038/s41467-021-22885-8. 11. Ma L, et al. Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor. Science 2019;365:162-168, doi:10.1126/science.aav8692. 12. Marsh J, Mukherjee P & Seyfried TN. Akt-dependent proapoptotic effects of dietary restriction on late-stage management of a phosphatase and tensin homologue/tuberous sclerosis complex 2-deficient mouse astrocytoma. Clin Cancer Res 2008;14, 7751–7762, doi:10.1158/1078-0432.ccr-08-0213. 13. Saha D, Martuza RL & Rabkin SD. Oncolytic herpes simplex virus immunovirotherapy in combination with immune checkpoint blockade to treat glioblastoma. Immunotherapy 2018;10, 779–786, doi:10.2217/imt-2018-0009. 14. Kloepper, J. et al. Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. Proc Natl Acad Sci U S A 2016;113:4476–4481, doi:10.1073/pnas.1525360113. 15. Seano G, et al. Solid stress in brain tumours causes neuronal loss and neurological dysfunction and can be reversed by lithium. Nat Biomed Eng 2019;3, 230–245, doi:10.1038/s41551-018-0334-7. 16. Gibson VB, et al. A novel method to allow noninvasive, longitudinal imaging of the murine immune system in vivo. Blood 2012;119:2545–2551, doi:10.1182/blood-2011-09-378356. 17. Aldape K, et al. Challenges to curing primary brain tumours. Nat Rev Clin Oncol 2019:16:509–520, doi:10.1038/s41571-019-0177-5. 18. Jain RK. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 2014;26:605–622, doi:10.1016/j.ccell.2014.10.006. 19. Martin JD, Seano G & Jain RK. Normalizing Function of Tumor Vessels: Progress, Opportunities, and Challenges. Annu Rev Physiol 2019;81:505–534, doi:10.1146/annurev-physiol-020518-114700. 20. Liu CJ, et al. Treatment of an aggressive orthotopic murine glioblastoma model with combination checkpoint blockade and a multivalent neoantigen vaccine. Neuro Oncol 2020;22:1276–1288, doi:10.1093/neuonc/noaa050. 21. Saha D, Martuza RL & Rabkin SD. Macrophage polarization contributes to glioblastoma eradication by combination immunovirotherapy and immune checkpoint blockade. Cancer Cell 2017;32:253–267.e255, doi:10.1016/j.ccell.2017.07.006. 22. Akbari P, et al. Directing CAR T cells towards the tumor vasculature for the treatment of solid tumors. Biochim Biophys Acta Rev Cancer 2022;1877:188701, doi:10.1016/j.bbcan.2022.188701. 23. Lanitis E, et al. VEGFR-2 redirected CAR-T cells are functionally impaired by soluble VEGF-A competition for receptor binding. J Immunother Cancer 2021;9: doi:10.1136/jitc-2020-002151. 24. Bocca P, et al. Bevacizumab-mediated tumor vasculature remodelling improves tumor infiltration and antitumor efficacy of GD2-CAR T cells in a human neuroblastoma preclinical model. Oncoimmunology 2021;7, e1378843, doi:10.1080/2162402X.2017.1378843. 25. Martinez Bedoya D, Dutoit V & Migliorini D. Allogeneic CAR T Cells: An Alternative to Overcome Challenges of CAR T Cell Therapy in Glioblastoma. Front Immunol 2021;12:640082, doi:10.3389/fimmu.2021.640082.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
科研通AI2S应助杨哈哈采纳,获得10
1秒前
1秒前
btyjs完成签到,获得积分10
1秒前
keke发布了新的文献求助10
1秒前
小马甲应助幻心采纳,获得10
1秒前
啾啾发布了新的文献求助10
2秒前
2秒前
搜集达人应助路人丨安采纳,获得10
2秒前
CYJ发布了新的文献求助10
2秒前
jessie驳回了Jasper应助
2秒前
怡然友安发布了新的文献求助10
3秒前
3秒前
3秒前
Gideon完成签到,获得积分10
3秒前
所所应助默默的不二采纳,获得10
4秒前
善学以致用应助满意的颦采纳,获得10
4秒前
爱吃冻梨完成签到 ,获得积分10
4秒前
亮仔发布了新的文献求助10
4秒前
4秒前
hgzb完成签到,获得积分10
5秒前
5秒前
Lazyazy_完成签到 ,获得积分10
5秒前
大模型应助micett采纳,获得10
5秒前
JING发布了新的文献求助10
6秒前
茗苓发布了新的文献求助10
6秒前
酷波er应助苏苏采纳,获得10
6秒前
桐桐应助lizhian采纳,获得10
6秒前
田様应助kaerless采纳,获得10
7秒前
独享发布了新的文献求助10
7秒前
7秒前
7秒前
领导范儿应助tt采纳,获得10
8秒前
啊哈完成签到,获得积分10
9秒前
9秒前
李爱国应助jinze采纳,获得10
9秒前
子午线发布了新的文献求助10
9秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648325
求助须知:如何正确求助?哪些是违规求助? 4775345
关于积分的说明 15043906
捐赠科研通 4807336
什么是DOI,文献DOI怎么找? 2570747
邀请新用户注册赠送积分活动 1527484
关于科研通互助平台的介绍 1486437