Application of Artificial Intelligence in Radiological Image Analysis for Pulmonary Disease Diagnosis: A Review of Current Methods and Challenges

放射性武器 肺病 医学 电流(流体) 医学物理学 人工智能 放射科 计算机科学 内科学 工程类 电气工程
作者
Karolina Zalewa,Joanna Olszak,Wojciech Kapłan,Dominika Orłowska,Lidia Bartoszek,Marta Kaus,Natalia Klepacz
出处
期刊:Journal of Education, Health and Sport [Kazimierz Wielki University in Bydgoszcz]
卷期号:77: 56893-56893 被引量:1
标识
DOI:10.12775/jehs.2025.77.56893
摘要

Introduction and purposeArtificial intelligence (AI), particularly machine learning (ML) and deep learning (DL), is revolutionizing radiology by improving diagnostic accuracy and efficiency. This paper examines AI applications, especially convolutional neural networks (CNNs), in diagnosing pulmonary diseases, such as pneumonia, tuberculosis, and lung cancer. The goal is to explore the impact of these technologies and assess challenges in their integration into clinical practice. Material and methodsThis review is based on articles from the PubMed database, published between 2015 and 2024, using keywords such as artificial intelligence in radiology, AI in medicine, AI in chest X-ray, and AI in chest-CT. ResultsAI, driven by ML and DL, has significantly enhanced medical imaging analysis, automating tasks that require expert interpretation. CNNs excel in processing raw image data and identifying hierarchical features, surpassing traditional methods in diagnosing lung diseases from radiographs and CT scans. AI systems demonstrate exceptional accuracy in detecting pneumonia, tuberculosis, and lung cancer, providing rapid, consistent results, particularly valuable in resource-limited settings. However, challenges persist, including the need for diverse training datasets, model interpretability, and integration into existing workflows. ConclusionsAI, especially CNN-based DL models, is reshaping radiology by advancing diagnostic capabilities. While it often outperforms traditional methods, AI is best used to complement human expertise. Overcoming challenges in data quality, system integration, and training is essential for broader clinical adoption. Continued research will enhance AI’s reliability and utility, ultimately improving patient outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Any完成签到,获得积分10
1秒前
CC完成签到,获得积分10
1秒前
棒棒堂完成签到,获得积分10
2秒前
2秒前
徐徐徐完成签到,获得积分10
3秒前
顾闭月完成签到,获得积分10
4秒前
迷茫的水母完成签到,获得积分20
5秒前
5秒前
CipherSage应助guojingjing采纳,获得10
5秒前
搜集达人应助成绩好采纳,获得10
6秒前
Enckson完成签到,获得积分10
6秒前
cijing完成签到 ,获得积分10
6秒前
9秒前
呢呢发布了新的文献求助30
11秒前
12秒前
kdshen发布了新的文献求助10
13秒前
李明完成签到,获得积分10
13秒前
烟花应助鄂惜霜采纳,获得10
14秒前
RUIY发布了新的文献求助10
15秒前
阿飞完成签到,获得积分10
15秒前
jack完成签到,获得积分10
16秒前
Jasper应助活泼初南采纳,获得10
16秒前
cd发布了新的文献求助10
16秒前
xxfsx应助顾闭月采纳,获得10
16秒前
16秒前
16秒前
机灵夜云完成签到,获得积分10
16秒前
wrecust完成签到,获得积分10
18秒前
东方天奇完成签到 ,获得积分10
18秒前
18秒前
20秒前
22秒前
Huanghong完成签到,获得积分10
22秒前
朱颜完成签到,获得积分10
22秒前
sj发布了新的文献求助200
22秒前
tjt发布了新的文献求助10
22秒前
lrz完成签到,获得积分10
23秒前
DearElsa发布了新的文献求助10
23秒前
23秒前
guojingjing发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5415220
求助须知:如何正确求助?哪些是违规求助? 4531876
关于积分的说明 14130667
捐赠科研通 4447442
什么是DOI,文献DOI怎么找? 2439667
邀请新用户注册赠送积分活动 1431793
关于科研通互助平台的介绍 1409400