Dynamic Correlation Analysis between Stress–Strain Curve and Polymer Film Structure Using Persistent Homology

聚合物 主成分分析 材料科学 持续时间 分子动力学 持久同源性 拉伤 压力(语言学) 化学物理 结晶学 化学 复合材料 计算化学 数学 生物 统计 解剖 哲学 语言学 算法
作者
Ryuhei Sato,Shinya Kawakami,Hirotaka Ejima,Takahiro Ujii,Kōichi Sato,Takanori Ichiki,Yasushi Shibuta
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:20 (24): 10798-10806 被引量:1
标识
DOI:10.1021/acs.jctc.4c01418
摘要

Coarse-grained molecular dynamics (CG-MD) simulations and subsequent persistent homology (PH) analysis were performed to correlate the structure and stress-strain behavior of polymer films. During uniaxial tensile MD simulations, the first principal component of the persistence diagram obtained by principal component analysis (PCA) was in good agreement with the stress-strain curve. This indicates that PH + PCA can identify critical ring structures relevant to the dynamic changes in MD simulations without requiring any prior knowledge. Inverse analysis of the persistence diagram revealed that smaller rings with ten or fewer CG beads mainly contribute to changes in the first principal component of the persistence diagram. This is due to the properties of the poly(ethylene oxide) chain, which favors the formation of a seven-membered helical structure during the self-entanglement process. The PH + PCA approach successfully reproduced the stress-strain curves for polymers with different nonbonding interactions and bond lengths. Moreover, the changes in the yield stress of each polymer film were qualitatively explained by the ring distribution in the persistence diagram. These results suggest that persistent homology analysis followed by PCA provides a versatile and powerful framework for correlating structural features with physical properties, such as ring distribution and stress-strain behavior in polymer films.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Daisy发布了新的文献求助10
刚刚
1秒前
2秒前
2秒前
4秒前
随风发布了新的文献求助10
5秒前
5秒前
5秒前
wy.he应助自觉一德采纳,获得10
5秒前
Liu66发布了新的文献求助10
5秒前
复杂含灵发布了新的文献求助10
6秒前
6秒前
boaster完成签到,获得积分10
6秒前
苒苒发布了新的文献求助10
6秒前
烦烦烦发布了新的文献求助10
7秒前
Ava应助78888采纳,获得10
7秒前
温水完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
10秒前
11秒前
复杂含灵完成签到,获得积分10
11秒前
自觉一德完成签到,获得积分10
12秒前
12秒前
紫薇发布了新的文献求助10
14秒前
WXY完成签到 ,获得积分10
15秒前
15秒前
Rainbow完成签到,获得积分10
15秒前
RIVER发布了新的文献求助30
15秒前
大可不必发布了新的文献求助30
16秒前
17秒前
bkagyin应助随风采纳,获得10
17秒前
hp发布了新的文献求助10
17秒前
缥缈的青旋完成签到,获得积分10
17秒前
端庄的友瑶完成签到,获得积分10
18秒前
19秒前
健壮的紫夏完成签到,获得积分10
19秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638275
求助须知:如何正确求助?哪些是违规求助? 4745159
关于积分的说明 15001795
捐赠科研通 4796454
什么是DOI,文献DOI怎么找? 2562586
邀请新用户注册赠送积分活动 1521971
关于科研通互助平台的介绍 1481834