A comparative analysis of LSTM, GRU, and Transformer models for construction cost prediction with multidimensional feature integration

变压器 计算机科学 特征(语言学) 人工智能 数据挖掘 工程类 电压 语言学 电气工程 哲学
作者
Shi Tang,Kazuya SHIDE
出处
期刊:Journal of Asian Architecture and Building Engineering [Informa]
卷期号:25 (1): 634-649 被引量:6
标识
DOI:10.1080/13467581.2025.2455034
摘要

Construction cost prediction remains a complex challenge due to the multidimensional nature of construction data and external factors. The objective of this study is to identify the most effective deep learning model for accurately predicting construction costs by comparing the performance of LSTM, GRU, and Transformer models. Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Transformer are advanced machine learning regression models widely utilized for data prediction tasks. This study investigates these models’ performance for construction cost prediction using a multidimensional feature framework. Through comprehensive evaluation and comparison, the Transformer model demonstrated superior performance, particularly excelling in handling complex feature interactions and long-sequence data. The LSTM model, while effective in capturing temporal dependencies, shows reliable performance but lags behind the Transformer in accuracy. The GRU model, although faster in training, proved less accurate and is less effective in handling outliers. Key features such as Total Area (TA), Site Area (SA), and Number of Floors (NF) were identified as significant predictors across all models, with the Transformer model proving particularly adept at capturing complex interactions. By integrating these features, this study contributes to improved cost management, thereby enhancing prediction accuracy and reliability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Melodrama发布了新的文献求助10
1秒前
aladi1011发布了新的文献求助10
1秒前
2秒前
zmmouc发布了新的文献求助10
2秒前
科研通AI6应助hahaha采纳,获得10
3秒前
海天发布了新的文献求助10
3秒前
温暖的冷风完成签到,获得积分10
3秒前
科研通AI6应助材料人采纳,获得10
4秒前
orixero应助心中的太阳采纳,获得10
5秒前
ooooodai发布了新的文献求助10
5秒前
ar发布了新的文献求助10
5秒前
小蘑菇应助小吴采纳,获得10
5秒前
思源应助你好采纳,获得10
5秒前
5秒前
5秒前
6秒前
Jared应助昂帕帕斯采纳,获得10
6秒前
6秒前
6秒前
一线忧思完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
满意语风完成签到,获得积分10
7秒前
8秒前
YMH完成签到,获得积分10
8秒前
柱zzz完成签到,获得积分10
9秒前
10秒前
10秒前
怕黑若云发布了新的文献求助10
10秒前
JJJLX发布了新的文献求助10
10秒前
10秒前
Lee发布了新的文献求助10
10秒前
香蕉觅云应助王志杰采纳,获得10
10秒前
情怀应助贺四洋采纳,获得10
11秒前
丘比特应助港崽宝宝采纳,获得10
11秒前
12秒前
雪下卧眠发布了新的文献求助10
12秒前
Hello应助yy采纳,获得10
12秒前
满意语风发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662187
求助须知:如何正确求助?哪些是违规求助? 4841182
关于积分的说明 15098653
捐赠科研通 4820689
什么是DOI,文献DOI怎么找? 2580075
邀请新用户注册赠送积分活动 1534254
关于科研通互助平台的介绍 1492939