材料科学
马氏体时效钢
选择性激光熔化
纳米-
热的
激光器
复合材料
冶金
微观结构
光学
物理
气象学
作者
Francisco Fernando Pinheiro Leite,Indrani Coondoo,João S. Vieira,José M. Oliveira,G. Miranda
摘要
Additive manufacturing (AM) has brought new possibilities to the moulding industry, particularly regarding the use of high-performance materials as maraging steels. This work explores 18Ni300 maraging steel reinforced with 4.5 vol.% TiC nanoparticles, fabricated by Selective Laser Melting (SLM), addressing the effect of post-fabrication aging treatment on both thermal and mechanical properties. Design of Experiments (DoE) was used to generate twenty-five experimental groups, in which laser power, scanning speed, and hatch distance were varied across five levels, with the aim of generating conclusions on optimal fabrication conditions. A comprehensive analysis was performed, starting with the nanocomposite feedstock and then involving the microstructural, mechanical, and thermal characterisation of SLM-fabricated nanocomposites. Nanocomposite relative density varied between 92.84% and 99.73%, and the presence of martensite, austenite, and TiC was confirmed in the as-built and heat-treated conditions. Results demonstrated a hardness of 411 HV for the as-built 18Ni300-TiC nanocomposite, higher than that of the non-reinforced steel, and this was further increased by performing aging treatment, achieving a hardness of 673 HV. Thermal conductivity results showed an improvement from ~12 W/m·K to ~19 W/m·K for nano-TiC-reinforced 18Ni300 when comparing values before and after heat treatment, respectively. Results showed that the addition of TiC nanoparticles to 18Ni300 maraging steel led to a combined thermal and mechanical performance suited for applications in which heat extraction is required, as in injection moulding.
科研通智能强力驱动
Strongly Powered by AbleSci AI