材料科学
光电子学
晶体管
电介质
紫外线
电压
阈值电压
栅极电介质
纳米技术
电气工程
工程类
作者
Xiteng Li,Zong-Zhe Wu,Wenbo Peng,Zhitong Li,Kai Yang,Xiwei Zheng,Lingqiang Meng,Hong Chen,Yueyue Wang,Jun Han,Yaowu He,Meili Xu,Hong Meng
出处
期刊:Small
[Wiley]
日期:2024-12-17
标识
DOI:10.1002/smll.202407019
摘要
Multifunctional organic light-emitting transistors (OLETs), which combine electric-switching and light-producing capabilities into a single device, are attracting increasing interest as promising candidates for new-generation display technology. Despite advancements in the design of organic luminescent materials and the optimization of device geometry configurations, maintaining operating voltage low while enhancing optical performances remains a key challenge in horizontally structured OLETs. Here, a simple and effective interfacial engineering strategy is employed to improve the optical properties of horizontal OLETs operating at low voltage, by introducing ultraviolet ozone (UVO)-induced surface modification on high-k dielectrics. It takes the role to not only control the surface activation states of dielectric layers but also optimize the growth dynamics behavior of channel film benefitting from the strong interfacial interaction between chemically modified dielectric surface and channel seed molecules. The optimized horizontal-channel OLET exhibits a significantly high brightness of 9,484 cd m
科研通智能强力驱动
Strongly Powered by AbleSci AI