A Simulation Study of the Performance of Statistical Models for Count Outcomes with Excessive Zeros

计数数据 负二项分布 泊松分布 统计 I类和II类错误 零膨胀模型 数学 二项分布 广义线性模型 统计模型 零(语言学) 统计能力 泊松回归 过度分散 计量经济学 医学 人口 哲学 环境卫生 语言学
作者
Zhengyang Zhou,Dateng Li,David Huh,Minge Xie,Eun‐Young Mun
出处
期刊:Cornell University - arXiv 被引量:3
标识
DOI:10.48550/arxiv.2301.12674
摘要

Background: Outcome measures that are count variables with excessive zeros are common in health behaviors research. There is a lack of empirical data about the relative performance of prevailing statistical models when outcomes are zero-inflated, particularly compared with recently developed approaches. Methods: The current simulation study examined five commonly used analytical approaches for count outcomes, including two linear models (with outcomes on raw and log-transformed scales, respectively) and three count distribution-based models (i.e., Poisson, negative binomial, and zero-inflated Poisson (ZIP) models). We also considered the marginalized zero-inflated Poisson (MZIP) model, a novel alternative that estimates the effects on overall mean while adjusting for zero-inflation. Extensive simulations were conducted to evaluate their the statistical power and Type I error rate across various data conditions. Results: Under zero-inflation, the Poisson model failed to control the Type I error rate, resulting in higher than expected false positive results. When the intervention effects on the zero (vs. non-zero) and count parts were in the same direction, the MZIP model had the highest statistical power, followed by the linear model with outcomes on raw scale, negative binomial model, and ZIP model. The performance of a linear model with a log-transformed outcome variable was unsatisfactory. When only one of the effects on the zero (vs. non-zero) part and the count part existed, the ZIP model had the highest statistical power. Conclusions: The MZIP model demonstrated better statistical properties in detecting true intervention effects and controlling false positive results for zero-inflated count outcomes. This MZIP model may serve as an appealing analytical approach to evaluating overall intervention effects in studies with count outcomes marked by excessive zeros.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxy完成签到,获得积分10
2秒前
汉堡包应助zxy采纳,获得10
8秒前
积极的中蓝完成签到 ,获得积分10
20秒前
科研通AI5应助域名采纳,获得10
26秒前
不倦应助康康采纳,获得10
37秒前
CodeCraft应助zz采纳,获得10
38秒前
Jasper应助mmm采纳,获得10
38秒前
39秒前
森花完成签到,获得积分10
39秒前
Xiaoxiao应助清晨的小鹿采纳,获得10
42秒前
43秒前
柔弱小之发布了新的文献求助10
45秒前
46秒前
天真无招给天真无招的求助进行了留言
47秒前
47秒前
泡泡糖完成签到,获得积分10
47秒前
47秒前
cztsse发布了新的文献求助10
48秒前
49秒前
刘松发布了新的文献求助10
51秒前
花生完成签到,获得积分10
53秒前
liuesnvn发布了新的文献求助10
53秒前
抱抱完成签到,获得积分10
53秒前
54秒前
zz发布了新的文献求助10
54秒前
慕青应助锅炉采纳,获得10
55秒前
59秒前
上官若男应助满意的晓啸采纳,获得10
1分钟前
1分钟前
村上春树的摩的完成签到 ,获得积分10
1分钟前
大模型应助Galaxee采纳,获得10
1分钟前
Alex_完成签到,获得积分10
1分钟前
Shantx完成签到,获得积分10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
1分钟前
皮肤科应助科研通管家采纳,获得30
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777121
求助须知:如何正确求助?哪些是违规求助? 3322541
关于积分的说明 10210567
捐赠科研通 3037872
什么是DOI,文献DOI怎么找? 1666940
邀请新用户注册赠送积分活动 797860
科研通“疑难数据库(出版商)”最低求助积分说明 758059