亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The deep-rooted origin of disulfide-rich spider venom toxins

毒液 生物 进化生物学 蜘蛛 系统发育树 系统发育学 分子进化 动物 生态学 遗传学 基因
作者
Naeem Shaikh,Kartik Sunagar
出处
期刊:eLife [eLife Sciences Publications Ltd]
卷期号:12 被引量:1
标识
DOI:10.7554/elife.83761
摘要

Spider venoms are a complex concoction of enzymes, polyamines, inorganic salts, and disulfide-rich peptides (DRPs). Although DRPs are widely distributed and abundant, their bevolutionary origin has remained elusive. This knowledge gap stems from the extensive molecular divergence of DRPs and a lack of sequence and structural data from diverse lineages. By evaluating DRPs under a comprehensive phylogenetic, structural and evolutionary framework, we have not only identified 78 novel spider toxin superfamilies but also provided the first evidence for their common origin. We trace the origin of these toxin superfamilies to a primordial knot - which we name 'Adi Shakti', after the creator of the Universe according to Hindu mythology - 375 MYA in the common ancestor of Araneomorphae and Mygalomorphae. As the lineages under evaluation constitute nearly 60% of extant spiders, our findings provide fascinating insights into the early evolution and diversification of the spider venom arsenal. Reliance on a single molecular toxin scaffold by nearly all spiders is in complete contrast to most other venomous animals that have recruited into their venoms diverse toxins with independent origins. By comparatively evaluating the molecular evolutionary histories of araneomorph and mygalomorph spider venom toxins, we highlight their contrasting evolutionary diversification rates. Our results also suggest that venom deployment (e.g. prey capture or self-defense) influences evolutionary diversification of DRP toxin superfamilies.The majority of spiders rely on their venom to defend themselves, to hunt, or both. Armed with this formidable weapon, they have managed to conquer every continent besides Antarctica since they first emerged about 495 million years ago. A closer look at spider venoms hints at an intriguing evolutionary history which has been rarely examined so far. The venom of other animals, such as snakes or scorpions, is usually formed of a wide range of unrelated toxins; in contrast, spiders rely on a single class of proteins, known as disulfide-rich peptides, to create their deadly venom cocktail. This family of molecules is impressively diverse, with each peptide having a distinct structure and mode of action. Its origins, however, have remained elusive. To fill this knowledge gap, Shaikh and Sunagar scanned the sequences of all disulfide-rich peptides generated to date, bringing together a dataset that includes 60% of all modern-day spiders. The analyses allowed the identification of 78 new superfamilies of spider toxins. They also revealed that all existing peptides originate from a single molecule, which Shaikh and Sunagar named after the powerful Hindu goddess Adi Shakti. This ancestral toxin was present 375 million years ago in the last common ancestor of modern-day spiders. The work also highlighted that disulfide-rich peptides evolved under different pressures in various groups of spiders; this may be because some species primarily use their venom for hunting, and others for defence. While the ‘hunters’ may need to constantly acquire toxins with new roles and structures to keep their edge over their prey, those that rely on venom to protect themselves may instead benefit from relying on tried-and-tested toxins useful against a range of infrequent predators. Finally, the analyses revealed that the disulphide-rich peptides of Mygalomorphae tarantulas, which form one of the three major groups of spiders, are much more diverse than the related toxins in other spiders. The underlying reason for this difference is still unclear. Several life-saving drugs currently on the market are based on toxins first identified in the venoms of snakes, cone sails or lizards. Similar discoveries could be unlocked by better understanding the range of deadly molecules used by spiders, and how these came to be.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
MMMMM应助科研通管家采纳,获得30
58秒前
andrele发布了新的文献求助10
59秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
www完成签到,获得积分10
1分钟前
远了个方发布了新的文献求助10
1分钟前
1分钟前
飞龙在天发布了新的文献求助10
2分钟前
2分钟前
2分钟前
无风发布了新的文献求助10
2分钟前
2分钟前
飞龙在天完成签到,获得积分10
2分钟前
2分钟前
梅赛德斯奔驰完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
3分钟前
努力乘凉发布了新的文献求助10
3分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
顾矜应助duoduoqian采纳,获得30
4分钟前
绫艾完成签到,获得积分10
4分钟前
MMMMM应助科研通管家采纳,获得70
4分钟前
鬼见愁应助皆可采纳,获得10
5分钟前
nicolaslcq完成签到,获得积分0
5分钟前
5分钟前
5分钟前
6分钟前
duoduoqian完成签到,获得积分10
6分钟前
6分钟前
共享精神应助努力乘凉采纳,获得10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
duoduoqian发布了新的文献求助30
6分钟前
6分钟前
努力乘凉发布了新的文献求助10
6分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4229344
求助须知:如何正确求助?哪些是违规求助? 3762684
关于积分的说明 11823963
捐赠科研通 3422709
什么是DOI,文献DOI怎么找? 1878246
邀请新用户注册赠送积分活动 931362
科研通“疑难数据库(出版商)”最低求助积分说明 839169