Machine Learning Models Using SHapley Additive exPlanation for Fire Risk Assessment Mode and Effects Analysis of Stadiums

模式(计算机接口) 计算机科学 机器学习 人工智能 工程类 人机交互
作者
Ying Lu,Xiaopeng Fan,Yi Zhang,Yong Wang,Xuepeng Jiang
出处
期刊:Sensors [MDPI AG]
卷期号:23 (4): 2151-2151 被引量:23
标识
DOI:10.3390/s23042151
摘要

Machine learning methods can establish complex nonlinear relationships between input and response variables for stadium fire risk assessment. However, the output of machine learning models is considered very difficult due to their complex “black box” structure, which hinders their application in stadium fire risk assessment. The SHapley Additive exPlanations (SHAP) method makes a local approximation to the predictions of any regression or classification model so as to be faithful and interpretable, and assigns significant values (SHAP value) to each input variable for a given prediction. In this study, we designed an indicator attribute threshold interval to classify and quantify different fire risk category data, and then used a random forest model combined with SHAP strategy in order to establish a stadium fire risk assessment model. The main objective is to analyze the impact analysis of each risk characteristic on four different risk assessment models, so as to find the complex nonlinear relationship between risk characteristics and stadium fire risk. This helps managers to be able to make appropriate fire safety management and smart decisions before an incident occurs and in a targeted manner to reduce the incidence of fires. The experimental results show that the established interpretable random forest model provides 83% accuracy, 86% precision, and 85% recall for the stadium fire risk test dataset. The study also shows that the low level of data makes it difficult to identify the range of decision boundaries for Critical mode and Hazardous mode.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gjy完成签到,获得积分20
刚刚
阳光的衫发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
1秒前
松子完成签到,获得积分10
2秒前
2秒前
wyhhh完成签到,获得积分10
2秒前
wahaha完成签到 ,获得积分10
2秒前
味子橘完成签到,获得积分10
2秒前
蜗牛123完成签到,获得积分10
3秒前
3秒前
ChemGuo完成签到,获得积分10
3秒前
3秒前
Carrie完成签到,获得积分10
4秒前
匡秋夕完成签到,获得积分10
4秒前
小蘑菇应助fool采纳,获得10
4秒前
赵梦鸢发布了新的文献求助10
5秒前
5秒前
筝zheng完成签到 ,获得积分10
5秒前
始终不够发布了新的文献求助10
6秒前
7秒前
zkk发布了新的文献求助10
7秒前
清风竹舞完成签到,获得积分10
7秒前
8秒前
Ava应助WBJ采纳,获得10
8秒前
Dxl完成签到,获得积分10
8秒前
Redemption发布了新的文献求助10
9秒前
小蘑菇应助淡定雍采纳,获得10
10秒前
今后应助徐玉采纳,获得10
12秒前
Akim应助liu星雨采纳,获得10
12秒前
13秒前
爱诺诺完成签到,获得积分10
13秒前
13秒前
wickedzz完成签到,获得积分10
14秒前
2752543083完成签到,获得积分10
14秒前
14秒前
JY发布了新的文献求助30
15秒前
顾矜应助BRUCE采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735617
求助须知:如何正确求助?哪些是违规求助? 5361598
关于积分的说明 15330603
捐赠科研通 4879809
什么是DOI,文献DOI怎么找? 2622330
邀请新用户注册赠送积分活动 1571336
关于科研通互助平台的介绍 1528174