Intent Prediction in Human–Human Interactions

计算机科学 水准点(测量) 人工智能 采样(信号处理) 序列(生物学) 骨架(计算机编程) 班级(哲学) 接头(建筑物) 机器学习 样品(材料) 计算机视觉 滤波器(信号处理) 工程类 生物 遗传学 建筑工程 化学 色谱法 程序设计语言 地理 大地测量学
作者
Murchana Baruah,Bonny Banerjee,Atulya K. Nagar
出处
期刊:IEEE Transactions on Human-Machine Systems [Institute of Electrical and Electronics Engineers]
卷期号:53 (2): 458-463 被引量:2
标识
DOI:10.1109/thms.2023.3239648
摘要

The human ability to infer others' intent is innate and crucial to development. Machines ought to acquire this ability for seamless interaction with humans. In this article, we propose an agent model for predicting the intent of actors in human–human interactions. This requires simultaneous generation and recognition of an interaction at any time, for which end-to-end models are scarce. The proposed agent actively samples its environment via a sequence of glimpses. At each sampling instant, the model infers the observation class and completes the partially observed body motion. It learns the sequence of body locations to sample by jointly minimizing the classification and generation errors. The model is evaluated on videos of two-skeleton interactions under two settings: (first person) one skeleton is the modeled agent and the other skeleton's joint movements constitute its visual observation, and (third person) an audience is the modeled agent and the two interacting skeletons' joint movements constitute its visual observation. Three methods for implementing the attention mechanism are analyzed using benchmark datasets. One of them, where attention is driven by sensory prediction error, achieves the highest classification accuracy in both settings by sampling less than 50% of the skeleton joints, while also being the most efficient in terms of model size. This is the first known attention-based agent to learn end-to-end from two-person interactions for intent prediction, with high accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xxx发布了新的文献求助30
1秒前
英俊的铭应助素月分辉采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
qq发布了新的文献求助10
2秒前
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
2秒前
jinxiao发布了新的文献求助10
3秒前
YYy完成签到,获得积分10
4秒前
4秒前
Lucas应助啵子采纳,获得10
5秒前
lalla发布了新的文献求助30
5秒前
SciGPT应助荒天帝采纳,获得10
6秒前
7秒前
7秒前
pdf发布了新的文献求助10
8秒前
科研通AI5应助coco采纳,获得10
9秒前
领导范儿应助robotmaster采纳,获得10
10秒前
钰钰发布了新的文献求助10
11秒前
星空完成签到,获得积分20
11秒前
11秒前
Zpiao发布了新的文献求助10
11秒前
Taishan完成签到,获得积分10
12秒前
lalla完成签到,获得积分20
12秒前
13秒前
大成子发布了新的文献求助20
13秒前
科研通AI2S应助jinxiao采纳,获得10
15秒前
素月分辉发布了新的文献求助10
15秒前
小二郎应助loser采纳,获得10
15秒前
16秒前
小野发布了新的文献求助10
16秒前
16秒前
昵称完成签到,获得积分10
16秒前
科研通AI5应助Zpiao采纳,获得10
17秒前
乐乐应助海绵宝宝采纳,获得10
17秒前
18秒前
爱因斯坦克完成签到 ,获得积分10
19秒前
19秒前
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787623
求助须知:如何正确求助?哪些是违规求助? 3333179
关于积分的说明 10260046
捐赠科研通 3048732
什么是DOI,文献DOI怎么找? 1673284
邀请新用户注册赠送积分活动 801756
科研通“疑难数据库(出版商)”最低求助积分说明 760338