Application of machine learning for evaluating and predicting fault seals: A case study in the Huimin depression, Bohai Bay Basin, Eastern China

过度拟合 随机森林 决策树 断层(地质) 校准 计算机科学 故障树分析 人工智能 机器学习 数据挖掘 统计 可靠性工程 工程类 地质学 人工神经网络 数学 地震学
作者
Qiaochu Wang,Dongxia Chen,Meijun Li,Fuwei Wang,Yu Wang,Wenlei Du,Xuebin Shi
标识
DOI:10.1016/j.geoen.2023.212064
摘要

Fault seal is of great significance for hydrocarbon migration, accumulation, and further hydrocarbon reservoir production. Approximate 32% petroleum resource is confirmed to be related to the faults. However, the existing fault seal evaluation methods based on statistical analysis cannot accurately predict fault seal which is influenced by multiple factors in a complex way. It is necessary to improve the fault seal evaluation methods for enhancing the exploration success rate. In this study, a new fault seal evaluation and prediction method based on decision tree (DT) and random forest (RF) is introduced. First, the original dataset was set by quantification and feature engineering work. Second, the nonlinear classification models for fault seal evaluation and prediction using a binary decision tree named the classification and regression tree (CART) were constructed and improved by overfitting calibration. Third, the random forest algorithm was selected as an ensemble learning method to improve the faut seal evaluation and prediction accuracy. Third, the evaluation metrics and cross-validation were used to evaluate the performance of the model. Finally, the validation test is applied for testing the reliability of the model. The result showed that among the 100,000 models constructed in this study, the DT best model could evaluate and predict the fault seal with a cross-validation accuracy of 80.60% after overfitting calibration by pruning. The best RF model showed the highest test accuracy of 86.54%, which is higher than that of the DT model. The models were used for predicting fault seals in another district in the Huimin Depression, and the prediction accuracy reached 90% and 95% for the DT and RF model, respectively. This study not only introduced a new method for fault seal evaluation and prediction, but also provided guidance for the application and development of machine learning in petroleum exploration and exploitation field and industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Owen应助YYMM采纳,获得10
1秒前
丘比特应助Tzzl0226采纳,获得10
1秒前
1秒前
xiao发布了新的文献求助10
2秒前
梦里潇湘发布了新的文献求助10
2秒前
濮阳乐双应助研友_59AB85采纳,获得10
3秒前
3秒前
lxz发布了新的文献求助10
4秒前
4秒前
学术通zzz发布了新的文献求助10
5秒前
5秒前
踏实语芙完成签到,获得积分10
5秒前
Tzzl0226发布了新的文献求助10
6秒前
6秒前
liumengyuan发布了新的文献求助10
6秒前
赘婿应助酷酷冷亦采纳,获得10
7秒前
7秒前
Tail完成签到,获得积分10
7秒前
7秒前
8秒前
liaoxueping发布了新的文献求助10
8秒前
难过的微生物完成签到,获得积分10
8秒前
生信好难发布了新的文献求助10
8秒前
bkagyin应助迅速文龙采纳,获得10
9秒前
乐观发布了新的文献求助10
9秒前
华仔应助香蕉寒梅采纳,获得10
10秒前
梦里潇湘完成签到,获得积分10
10秒前
万宁发布了新的文献求助10
11秒前
Tail发布了新的文献求助10
11秒前
春眠不觉小小酥完成签到,获得积分10
11秒前
11秒前
zzt37927发布了新的文献求助30
12秒前
12秒前
15秒前
木头马尾应助科研畅通侠采纳,获得20
16秒前
小明明完成签到,获得积分10
16秒前
16秒前
牧听莲发布了新的文献求助10
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814887
求助须知:如何正确求助?哪些是违规求助? 3358983
关于积分的说明 10399091
捐赠科研通 3076489
什么是DOI,文献DOI怎么找? 1689843
邀请新用户注册赠送积分活动 813339
科研通“疑难数据库(出版商)”最低求助积分说明 767608