3D Pore Structure Characterization of Stored Grain Bed

曲折 压实 多孔性 材料科学 气流 体积热力学 复合材料 矿物学 地质学 工程类 机械工程 热力学 物理
作者
Charles Chioma Nwaizu,Charles Chioma Nwaizu,Qiang Zhang,Christiana Iluno,Qiang Zhang,Christiana Iluno
出处
期刊:Applied Engineering in Agriculture [American Society of Agricultural and Biological Engineers]
卷期号:38 (6): 941-950 被引量:5
标识
DOI:10.13031/aea.15133
摘要

Highlights An image analysis for reconstruction of 3D pore structure within bulk grain was presented. Mathematical models for porosity and tortuosity were developed from the 3D reconstructed images. The mathematical models can be incorporated in computational model of flow through bulk grains. Abstract. An image analysis technique for reconstruction of the complex 3D pore structure within bulk grain from 2D section images was presented. The technique relies on aligning successive 2D images of cut-sections obtained from colored-wax solidified soybean grain beds, which were then subjected to image processing using ImageJ software developed by the National Institute of Health (NIH, Bethesda, Md.) for the reconstruction and visualization of different airflow paths within the bulk grain. Porosity and tortuosity values were quantified from the 3D image volume and 3D reconstructed inter-connected airflow paths to develop empirical mathematical models for predicting porosity and tortuosity as a function of compaction due to the pressure exerted by the grain depth. Results indicated that the rate of decrease in porosity was higher at the lower compaction grain depth and then gradually approached a minimum value as the compaction grain depth increased. At the top of the compacted grain, the porosity of the tested soybean bed was determined to be 0.42 and reduced to 0.34 at a compaction pressure of 14.2 kPa (equivalent to a compaction grain depth of 25 m). Tortuosity increased with the compaction pressure from 1.15 to 1.58 at a compaction pressure of 14.2 kPa (equivalent to 25 m of grain depth), or by 37.4%. Keywords: Grain bed, Image analysis, Pore structure, Porosity, Tortuosity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
年轻无剑发布了新的文献求助20
3秒前
从心出发发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
一个神秘的杀手完成签到,获得积分20
4秒前
5秒前
所所应助刻苦嫣采纳,获得10
5秒前
6秒前
7秒前
hsy发布了新的文献求助10
7秒前
深情安青应助阿洁采纳,获得10
7秒前
fzzf完成签到,获得积分10
7秒前
看星星完成签到 ,获得积分10
8秒前
科研通AI6应助王麒采纳,获得10
8秒前
8秒前
科研通AI6应助仲半邪采纳,获得10
8秒前
9秒前
9秒前
lucky完成签到 ,获得积分10
9秒前
10秒前
cinnamonbrd发布了新的文献求助10
10秒前
solarlad完成签到,获得积分10
10秒前
果果完成签到,获得积分20
10秒前
11秒前
QL完成签到,获得积分10
11秒前
情怀应助Baneyhua采纳,获得10
12秒前
awenger发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
JJ关闭了JJ文献求助
13秒前
13秒前
茕穹完成签到,获得积分10
14秒前
hhhh发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
18秒前
刻苦嫣发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662631
求助须知:如何正确求助?哪些是违规求助? 4844091
关于积分的说明 15100612
捐赠科研通 4821037
什么是DOI,文献DOI怎么找? 2580503
邀请新用户注册赠送积分活动 1534565
关于科研通互助平台的介绍 1493075