计算机科学
模运算
乘法(音乐)
并行计算
算术
多项式的
操作数
乘法算法
密码学
计算机硬件
算法
数学
二进制数
组合数学
数学分析
作者
Minghao Li,Jing Tian,Xiao Hu,Zhongfeng Wang
标识
DOI:10.1109/tcad.2022.3230359
摘要
Recently, the National Institute of Standards and Technology (NIST) has identified the first four quantum-resistant algorithms for post-quantum cryptography (PQC) standardization. CRYSTALS-Kyber (Kyber) is the only public-key encryption and key-establishment algorithm among them. In this article, we propose a reconfigurable, high-speed, and area-efficient polynomial multiplication accelerator for Kyber to facilitate its practical applications. The cornerstone of polynomial multiplication is the butterfly unit (BU) structure, composed of modular addition, subtraction, and multiplication. For the modular multiplication, we adopt the Barrett reduction method and reduce the size of operands leveraging the form of modulus with a novel formula transformation, which significantly decreases the computational complexity and increases the maximum clock frequency. On the hardware side, we make four BU modules constitute a binomial arithmetic core (Bi-Core) as the basic reconfigurable unit. The memory access scheme tailored for parallel processing is explored with data-reusing and memory-grouping methods, and a compact control logic is devised. The complete polynomial multiplication architecture is coded with Verilog and implemented on a Xilinx Artix-7 xc7a100t-3 device. Experiment results demonstrate that our implementations with different configurations all outperform the state-of-the-art works in area efficiency by up to 39% improvement in terms of area-time product (ATP). Moreover, the proposed design with four Bi-Cores achieves the fastest speed among existing designs.
科研通智能强力驱动
Strongly Powered by AbleSci AI