Synergetic Effects of Strain Engineering and Carbon Vacancy Modification on Tin+1CnO2 MXene for Promising Catalytic Activity of Hydrogen Evolution Reaction

MXenes公司 空位缺陷 材料科学 制氢 纳米技术 结晶学 化学 冶金 有机化学
作者
Changying Wang,Xue Hai,Hao Wang,Yongshun Song,Zhilong Wan,Yuqi Yang,Ping Huai,Yaru Yin
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:128 (25): 10324-10335 被引量:1
标识
DOI:10.1021/acs.jpcc.4c00779
摘要

Developing efficient and low-cost catalysts is crucial to hydrogen generation through water electrolysis. Oxygen-functionalized titanium carbide MXene holds tremendous potential in catalyzing the hydrogen evolution reaction (HER). However, appropriate modulation approaches aiming at optimizing the HER performance of these MXenes have not been systematically investigated. In this work, density functional theory was employed to screen the optimal HER operating conditions of Tin+1CnO2 (n = 1–3) by introducing carbon (C) vacancy modification coupled with strain engineering. Terminal oxygen atoms of pristine Ti2CO2 are identified as excellent reactive sites at relatively low hydrogen coverage, while those of Ti3C2O2 and Ti4C3O2 can reach an ideal catalytic state at high hydrogen coverage. An effective fine-tuning of reactive sites on these pristine MXenes can be achieved by exerting a biaxial strain. Besides, C vacancy can breed its nearest neighbor O atoms as active sites for Ti3C2O2 and Ti4C3O2, and their intrinsically excessive hydrogen adsorption would be weakened with the Gibbs free energies regulated extremely close to 0 eV. Detailed analyses indicate that more electrons are transferred to O atoms adjacent to the introduced C vacancy with the O-2p band center downshifting toward lower energy, thus weakening MXenes' capability in capturing hydrogen. Taken together, by collaborating biaxial strain with a C vacancy, Ti3C2O2 and Ti4C3O2 can perform with more outstanding reactive sites at a wider hydrogen coverage, while Ti2CO2 can perform only at low coverage. Our theoretical results point out reasonable regulation strategies for the desirable HER catalytic performance of Tin+1CnO2.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧郁芹菜应助芋泥采纳,获得10
刚刚
刚刚
慎独而已发布了新的文献求助10
刚刚
jwj发布了新的文献求助10
刚刚
kk发布了新的文献求助10
1秒前
yangfan发布了新的文献求助10
1秒前
酸酸发布了新的文献求助10
1秒前
章鱼发布了新的文献求助10
2秒前
2秒前
wfl完成签到 ,获得积分10
3秒前
3秒前
机灵乐驹发布了新的文献求助10
4秒前
李健应助别喝他的酒采纳,获得10
4秒前
5秒前
科研通AI5应助ewmmel采纳,获得10
6秒前
丘比特应助吉师大_科研采纳,获得10
6秒前
现代飞鸟完成签到,获得积分10
7秒前
不见高山发布了新的文献求助10
7秒前
科目三应助芋泥采纳,获得10
8秒前
阿白完成签到,获得积分10
9秒前
9秒前
Singularity应助Yubaibaio采纳,获得10
9秒前
酱啊油发布了新的文献求助10
10秒前
科研互通发布了新的文献求助30
11秒前
11秒前
科目三应助酸酸采纳,获得10
12秒前
分工合作完成签到,获得积分10
12秒前
隐形鸣凤完成签到,获得积分10
13秒前
13秒前
巧克力餐包完成签到 ,获得积分10
13秒前
糖卜里卜发布了新的文献求助20
14秒前
不见高山完成签到,获得积分10
14秒前
超级盼海发布了新的文献求助10
14秒前
14秒前
hjy完成签到,获得积分10
14秒前
桐桐应助菜菜羊采纳,获得10
15秒前
16秒前
活泼莫英发布了新的文献求助10
16秒前
未启名完成签到,获得积分20
16秒前
17秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Experimental Design for the Life Sciences 200
Semiconductor Wafer Bonding: Science Technology, and Applications VI 200
Parallel Optimization 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835735
求助须知:如何正确求助?哪些是违规求助? 3378088
关于积分的说明 10502218
捐赠科研通 3097678
什么是DOI,文献DOI怎么找? 1705955
邀请新用户注册赠送积分活动 820760
科研通“疑难数据库(出版商)”最低求助积分说明 772274