A causal counterfactual graph neural network for arising-from-chair abnormality detection in parkinsonians

反事实思维 计算机科学 人工智能 图形 人工神经网络 理论(学习稳定性) 重采样 借记 机器学习 心理学 理论计算机科学 认知科学 社会心理学
作者
Xinlu Tang,Rui Guo,Chencheng Zhang,Xiaohua Qian
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:97: 103266-103266 被引量:5
标识
DOI:10.1016/j.media.2024.103266
摘要

The arising-from-chair task assessment is a key aspect of the evaluation of movement disorders in Parkinson's disease (PD). However, common scale-based clinical assessment methods are highly subjective and dependent on the neurologist's expertise. Alternate automated methods for arising-from-chair assessment can be established based on quantitative susceptibility mapping (QSM) images with multiple-instance learning. However, performance stability for such methods can be typically undermined by the presence of irrelevant or spuriously-relevant features that mask the intrinsic causal features. Therefore, we propose a QSM-based arising-from-chair assessment method using a causal graph-neural-network framework, where counterfactual and debiasing strategies are developed and integrated into this framework for capturing causal features. Specifically, the counterfactual strategy is proposed to suppress irrelevant features caused by background noise, by producing incorrect predictions when dropping causal parts. The debiasing strategy is proposed to suppress spuriously relevant features caused by the sampling bias and it comprises a resampling guidance scheme for selecting stable instances and a causal invariance constraint for improving stability under various interferences. The results of extensive experiments demonstrated the superiority of the proposed method in detecting arising-from-chair abnormalities. Its clinical feasibility was further confirmed by the coincidence between the selected causal features and those reported in earlier medical studies. Additionally, the proposed method was extensible for another motion task of leg agility. Overall, this study provides a potential tool for automated arising-from-chair assessment in PD patients, and also introduces causal counterfactual thinking in medical image analysis. Our source code is publicly available at https://github.com/SJTUBME-QianLab/CFGNN-PDarising.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
MUAN完成签到 ,获得积分10
3秒前
无花果应助玉玉采纳,获得10
3秒前
海波发布了新的文献求助10
3秒前
4秒前
重要手机发布了新的文献求助10
5秒前
zjq完成签到,获得积分10
5秒前
6nine9完成签到,获得积分10
6秒前
明亮嘉熙发布了新的文献求助10
7秒前
华仔应助无风采纳,获得10
8秒前
jobs完成签到,获得积分20
8秒前
9秒前
9秒前
10秒前
11秒前
嵇之云发布了新的文献求助10
11秒前
小欣6116完成签到,获得积分10
11秒前
Owen应助金陵第一大美女采纳,获得10
11秒前
顾矜应助Zzz采纳,获得10
12秒前
12秒前
12秒前
zlk完成签到,获得积分10
12秒前
13秒前
13秒前
acd完成签到,获得积分10
14秒前
林林发布了新的文献求助10
14秒前
机智的鬼发布了新的文献求助20
15秒前
張医铄完成签到,获得积分10
15秒前
16秒前
16秒前
Stroeve完成签到,获得积分10
16秒前
riyamao完成签到,获得积分10
16秒前
韩一发布了新的文献求助10
16秒前
16秒前
yuni发布了新的文献求助10
17秒前
哲轩完成签到,获得积分10
17秒前
小羊发布了新的文献求助10
17秒前
萝卜干完成签到,获得积分10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4511065
求助须知:如何正确求助?哪些是违规求助? 3956932
关于积分的说明 12267110
捐赠科研通 3617909
什么是DOI,文献DOI怎么找? 1990861
邀请新用户注册赠送积分活动 1027117
科研通“疑难数据库(出版商)”最低求助积分说明 918447