Contextualized and Personalized Math Word Problem Generation in Authentic Contexts Using Generative Pre-trained Transformer and Its Influences on Geometry Learning

语境化 个性化 计算机科学 背景(考古学) 感知 生成语法 学习风格 数学教育 多媒体 人工智能 人机交互 数学 心理学 万维网 古生物学 神经科学 生物 程序设计语言 口译(哲学)
作者
Ika Qutsiati Utami,Wu‐Yuin Hwang,Uun Hariyanti
出处
期刊:Journal of Educational Computing Research [SAGE Publishing]
卷期号:62 (6): 1604-1639 被引量:1
标识
DOI:10.1177/07356331241249225
摘要

Recently, automatic question generation (AQG) has been researched extensively for educational purposes. Existing approaches generally lack relevant information on the authentic context and problem diversity with various difficulty levels, so we proposed a new AQG system for generating contextualized and personalized mathematic word problems (MWP) in authentic contexts using the Generative Pre-trained Transformers (GPT). Our proposed system comprises (1) authentic contextual information acquisition through image recognition by TensorFlow and augmented reality (AR) measurement by AR Core, (2) a personalized mechanism based on instructional prompts to generate three different difficulty levels for learners’ different needs, and (3) MWP generation through GPT with authentic contextual information and personalized needs. We conducted a quasi-experiment with the participation of 52 students to evaluate the effectiveness of the proposed system on geometry learning performance. Further, the learning behaviors were analyzed in the aspects of authentic context, mathematics, and reflective behavior. The findings showed better results in geometry learning performances from students who learned with contextualized and personalized MWPs than those who were taught without contextualization and personalization on MWPs. Moreover, it was found that student’s ability to comprehend the practical situation or scenario presented in a problem (problem context understanding) and students’ ability to recognize relevant information from the problem context (identifying contextual information) significantly improved their learning performance. Moreover, students’ ability to apply math concepts and solve medium-level MWP also contributes to the improvement of learning performance. Meanwhile, learners showed positive perceptions toward the proposed system in facilitating geometry learning. Therefore, it is useful to promote an authentic context setting for mathematical problem-solving.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lulu完成签到 ,获得积分10
8秒前
liuyq0501完成签到,获得积分0
11秒前
坚强觅珍完成签到 ,获得积分10
20秒前
Kkk完成签到 ,获得积分10
21秒前
wefor完成签到 ,获得积分10
21秒前
songyu完成签到,获得积分10
30秒前
sowhat完成签到 ,获得积分10
34秒前
even完成签到 ,获得积分10
42秒前
甜美早晨完成签到 ,获得积分10
42秒前
Lyanph完成签到 ,获得积分10
42秒前
甜甜圈完成签到 ,获得积分10
42秒前
嗯嗯嗯哦哦哦完成签到 ,获得积分10
45秒前
pengyh8完成签到 ,获得积分10
50秒前
Shicheng完成签到,获得积分10
50秒前
哈哈哈完成签到 ,获得积分10
54秒前
上山石头完成签到,获得积分10
1分钟前
认真丹亦完成签到 ,获得积分10
1分钟前
温暖小松鼠完成签到 ,获得积分10
1分钟前
饱满烙完成签到 ,获得积分10
1分钟前
1分钟前
元欣完成签到 ,获得积分10
1分钟前
zly发布了新的文献求助10
1分钟前
ZDM6094完成签到 ,获得积分10
1分钟前
现实的大白完成签到 ,获得积分10
1分钟前
隐形曼青应助Allisu采纳,获得10
1分钟前
健忘的晓小完成签到 ,获得积分10
1分钟前
liberation完成签到 ,获得积分0
1分钟前
王佳豪完成签到,获得积分10
1分钟前
1分钟前
coolkid应助科研通管家采纳,获得10
1分钟前
bkagyin应助科研通管家采纳,获得10
1分钟前
coolkid应助科研通管家采纳,获得10
1分钟前
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
Allisu发布了新的文献求助10
1分钟前
俊逸吐司完成签到 ,获得积分10
1分钟前
Allisu完成签到,获得积分20
1分钟前
cici完成签到 ,获得积分10
2分钟前
开心的若烟完成签到,获得积分10
2分钟前
回首不再是少年完成签到,获得积分0
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3946199
求助须知:如何正确求助?哪些是违规求助? 3491114
关于积分的说明 11058987
捐赠科研通 3222060
什么是DOI,文献DOI怎么找? 1780807
邀请新用户注册赠送积分活动 865846
科研通“疑难数据库(出版商)”最低求助积分说明 800083