High-performance research of the photocatalyst of amorphous iron oxide supported on the novel Bi-based compound in the photo-Fenton system for the removal of dye pollutant

光催化 污染物 无定形固体 氧化物 有机染料 材料科学 化学 环境化学 光化学 纳米技术 化学工程 冶金 催化作用 有机化学 工程类
作者
Jinchi Lin,Yuting Deng,Xiuming Yu,Jinhui Yang,Wentao Zhu,Shuibo Xie,Bin Yang
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:1002: 174863-174863 被引量:3
标识
DOI:10.1016/j.jallcom.2024.174863
摘要

The research and application of bismuth-based semiconductor photocatalysis for the green and environmentally friendly degradation of dye pollutants have garnered widespread attention from scholars. The key factor in photocatalytic activity lies in the development of composite catalysts with high activity and high stability. A new type of Fe/Bi2CuO4-PVAC photocatalyst (FBC) was constructed by low-temperature calcination, which can effectively avoid serious iron leaching problems. Under the photocatalytic Fenton system, the composite material FBC exhibits high-performance degradation of various organic pollutants such as methyl orange (MO), tetracycline (TC), rhodamine B (RhB), and methyl blue (MB), and the optimal removal rates were 98.67%, 97.90%, 91.50% and 96.32%, respectively. The structure, morphology, optics, and electronic properties were systematically characterized. Finally, A possible photocatalytic mechanism of FBC composite materials was proposed in the photo-Fenton catalysis reasonably, suggesting that the main reactive oxygen species (ROS) is ·OH in the photo-Fenton degradation of composite catalysts, rather than ·O2- generated in the Bi2CuO4 photocatalysis. The high performance mainly stems from the synergistic effect between photo-induced charge carrier separation and the interface Fenton-like reaction between iron oxide and H2O2. In addition, the excellent degradation performance and chemical stability provide the possibility for practical potential applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
飘逸的天菱完成签到,获得积分20
2秒前
NL发布了新的文献求助10
2秒前
2秒前
3秒前
高兴翅膀完成签到,获得积分10
5秒前
甜甜的觅夏完成签到,获得积分10
5秒前
MM完成签到,获得积分10
5秒前
6秒前
6秒前
shannian完成签到,获得积分10
6秒前
beizi发布了新的文献求助10
7秒前
lululuna完成签到,获得积分10
7秒前
8秒前
jzy完成签到,获得积分10
9秒前
汉堡怪兽发布了新的文献求助10
10秒前
尔信完成签到 ,获得积分10
12秒前
12秒前
Hello应助89757采纳,获得10
12秒前
麻薯头头发布了新的文献求助10
13秒前
13秒前
好好学习天天向上完成签到,获得积分10
14秒前
14秒前
坦率的惊蛰完成签到,获得积分10
16秒前
16秒前
16秒前
16秒前
明理的又菡完成签到,获得积分10
16秒前
17秒前
汉堡怪兽完成签到,获得积分10
18秒前
lxl220发布了新的文献求助10
19秒前
19秒前
小巧风华发布了新的文献求助10
19秒前
章子萱发布了新的文献求助10
19秒前
六月发布了新的文献求助10
20秒前
22秒前
23秒前
CatProMax完成签到,获得积分10
24秒前
完美世界应助1213采纳,获得10
24秒前
YANA完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297129
求助须知:如何正确求助?哪些是违规求助? 4446068
关于积分的说明 13838325
捐赠科研通 4331226
什么是DOI,文献DOI怎么找? 2377460
邀请新用户注册赠送积分活动 1372740
关于科研通互助平台的介绍 1338303