Application of molecular networking to improve the compound annotation in liquid chromatography–mass spectrometry–based metabolomics analysis: A case study of Bupleuri radix

代谢组学 主成分分析 化学 注释 色谱法 质量 公共化学 质谱法 化学计量学 液相色谱-质谱法 偏最小二乘回归 预处理器 线性判别分析 计算生物学 模式识别(心理学) 计算机科学 人工智能 质谱 机器学习 生物化学 生物
作者
Weibo Qin,Yi Wu,Wenyi Gao,Yang Wang
出处
期刊:Phytochemical Analysis [Wiley]
卷期号:35 (7): 1695-1703
标识
DOI:10.1002/pca.3412
摘要

Abstract Introduction Compound annotation is always a challenging step in metabolomics studies. The molecular networking strategy has been developed recently to organize the relationship between compounds as a network based on their tandem mass (MS2) spectra similarity, which can be used to improve compound annotation in metabolomics analysis. Objective This study used Bupleuri Radix from different geographic areas to evaluate the performance of molecular networking strategy for compound annotation in liquid chromatography‐mass spectrometry (LC–MS)–based metabolomics. Methodology The Bupleuri Radix extract was analyzed by LC‐quadrupole time‐of‐flight MS under MSe acquisition mode. After raw data preprocessing, the resulting dataset was used for statistical analysis, including principal component analysis (PCA) and partial least squares discriminant analysis (PLS‐DA). The chemical makers related to the sample growth place were selected using variable importance in projection (VIP) > 2, fold change (FC) > 2, and p < 0.05. The molecular networking analysis was applied to conduct the compound annotation. Results The score plots of PCA showed that the samples were classified into two clusters depending on their growth place. Then, the PLS‐DA model was constructed to explore the chemical changes of the samples further. Sixteen compounds were selected as chemical makers and tentatively annotated by the feature‐based molecular networking (FBMN) analysis. Conclusion The results showed that the molecular networking method fully exploits the MS information and is a promising tool for facilitating compound annotation in metabolomics studies. However, the software used for feature extraction influenced the results of library searching and molecular network construction, which need to be taken into account in future studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
hihi发布了新的文献求助10
3秒前
3秒前
韩哈哈完成签到,获得积分10
3秒前
3秒前
3秒前
羽羊周周发布了新的文献求助30
3秒前
MrHao完成签到,获得积分10
4秒前
maple完成签到,获得积分10
4秒前
wyh发布了新的文献求助10
5秒前
青藤发布了新的文献求助20
5秒前
6秒前
6秒前
小懒猪完成签到,获得积分10
6秒前
ichigo完成签到,获得积分10
6秒前
Jasper应助学习行动派采纳,获得10
7秒前
桐桐应助小虫子采纳,获得10
8秒前
manfullmoon完成签到,获得积分10
8秒前
8秒前
paper快来发布了新的文献求助10
9秒前
搜集达人应助Ar采纳,获得10
9秒前
10秒前
自信夜春发布了新的文献求助10
11秒前
12秒前
ichigo发布了新的文献求助10
12秒前
等待妖妖发布了新的文献求助10
14秒前
自信夜春完成签到,获得积分10
15秒前
SciGPT应助paper快来采纳,获得10
16秒前
沐风应助执着半山采纳,获得20
17秒前
XD824发布了新的文献求助10
17秒前
羽羊周周完成签到,获得积分10
18秒前
东东有点樊完成签到,获得积分20
18秒前
lisiying完成签到,获得积分10
19秒前
后来应助阿龙采纳,获得10
21秒前
增加应助白桃采纳,获得10
21秒前
Ar完成签到,获得积分10
21秒前
jify应助闻老头菊花碳采纳,获得10
22秒前
等待妖妖完成签到,获得积分10
22秒前
shimmery发布了新的文献求助200
24秒前
26秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817233
求助须知:如何正确求助?哪些是违规求助? 3360670
关于积分的说明 10408473
捐赠科研通 3078727
什么是DOI,文献DOI怎么找? 1690784
邀请新用户注册赠送积分活动 814084
科研通“疑难数据库(出版商)”最低求助积分说明 768037