Co-Embedding of Nodes and Edges With Graph Neural Networks

计算机科学 理论计算机科学 人工神经网络 图嵌入 嵌入 图形 模式识别(心理学) 人工智能 图论 组合数学 数学
作者
Xiaodong Jiang,Ronghang Zhu,Pengsheng Ji,Sheng Li
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (6): 7075-7086 被引量:44
标识
DOI:10.1109/tpami.2020.3029762
摘要

Graph, as an important data representation, is ubiquitous in many real world applications ranging from social network analysis to biology. How to correctly and effectively learn and extract information from graph is essential for a large number of machine learning tasks. Graph embedding is a way to transform and encode the data structure in high dimensional and non-euclidean feature space to a low dimensional and structural space, which is easily exploited by other machine learning algorithms. We have witnessed a huge surge of such embedding methods, from statistical approaches to recent deep learning methods such as the graph convolutional networks (GCN). Deep learning approaches usually outperform the traditional methods in most graph learning benchmarks by building an end-to-end learning framework to optimize the loss function directly. However, most of the existing GCN methods can only perform convolution operations with node features, while ignoring the handy information in edge features, such as relations in knowledge graphs. To address this problem, we present CensNet , C onvolution with E dge- N ode S witching graph neural network, for learning tasks in graph-structured data with both node and edge features. CensNet is a general graph embedding framework, which embeds both nodes and edges to a latent feature space. By using line graph of the original undirected graph, the role of nodes and edges are switched, and two novel graph convolution operations are proposed for feature propagation. Experimental results on real-world academic citation networks and quantum chemistry graphs show that our approach achieves or matches the state-of-the-art performance in four graph learning tasks, including semi-supervised node classification, multi-task graph classification, graph regression, and link prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1111发布了新的文献求助10
7秒前
蒋时晏应助啦啦啦啦啦采纳,获得30
8秒前
keira完成签到,获得积分10
9秒前
安详的未来完成签到,获得积分20
13秒前
14秒前
科研通AI2S应助Bin_Liu采纳,获得10
15秒前
烟花应助麦兜不卖兜采纳,获得10
16秒前
paper完成签到 ,获得积分10
17秒前
午休发布了新的文献求助10
18秒前
张宏宇发布了新的文献求助10
19秒前
23秒前
keira发布了新的文献求助10
23秒前
徐徐发布了新的文献求助20
24秒前
hhhhhhhhhh完成签到 ,获得积分10
25秒前
大个应助张宏宇采纳,获得10
28秒前
1111发布了新的文献求助10
29秒前
CipherSage应助小闵采纳,获得10
29秒前
29秒前
我是老大应助lulyt采纳,获得10
30秒前
洁净的老寿星完成签到,获得积分10
34秒前
35秒前
35秒前
dada完成签到 ,获得积分10
36秒前
why完成签到,获得积分10
38秒前
吉吉完成签到,获得积分10
38秒前
abb完成签到,获得积分10
39秒前
40秒前
小闵发布了新的文献求助10
41秒前
整齐芷文完成签到,获得积分10
41秒前
pluto应助jyyg采纳,获得10
42秒前
吉吉发布了新的文献求助10
44秒前
FashionBoy应助沈海采纳,获得10
44秒前
8R60d8应助科研通管家采纳,获得10
46秒前
传奇3应助科研通管家采纳,获得10
46秒前
科研通AI2S应助科研通管家采纳,获得10
46秒前
香蕉觅云应助科研通管家采纳,获得10
46秒前
搜集达人应助科研通管家采纳,获得10
46秒前
科研通AI2S应助科研通管家采纳,获得10
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779569
求助须知:如何正确求助?哪些是违规求助? 3325031
关于积分的说明 10221139
捐赠科研通 3040176
什么是DOI,文献DOI怎么找? 1668640
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758535