Co-Embedding of Nodes and Edges With Graph Neural Networks

计算机科学 理论计算机科学 人工神经网络 图嵌入 嵌入 图形 模式识别(心理学) 人工智能 图论 组合数学 数学
作者
Xiaodong Jiang,Ronghang Zhu,Pengsheng Ji,Sheng Li
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (6): 7075-7086 被引量:44
标识
DOI:10.1109/tpami.2020.3029762
摘要

Graph, as an important data representation, is ubiquitous in many real world applications ranging from social network analysis to biology. How to correctly and effectively learn and extract information from graph is essential for a large number of machine learning tasks. Graph embedding is a way to transform and encode the data structure in high dimensional and non-euclidean feature space to a low dimensional and structural space, which is easily exploited by other machine learning algorithms. We have witnessed a huge surge of such embedding methods, from statistical approaches to recent deep learning methods such as the graph convolutional networks (GCN). Deep learning approaches usually outperform the traditional methods in most graph learning benchmarks by building an end-to-end learning framework to optimize the loss function directly. However, most of the existing GCN methods can only perform convolution operations with node features, while ignoring the handy information in edge features, such as relations in knowledge graphs. To address this problem, we present CensNet , C onvolution with E dge- N ode S witching graph neural network, for learning tasks in graph-structured data with both node and edge features. CensNet is a general graph embedding framework, which embeds both nodes and edges to a latent feature space. By using line graph of the original undirected graph, the role of nodes and edges are switched, and two novel graph convolution operations are proposed for feature propagation. Experimental results on real-world academic citation networks and quantum chemistry graphs show that our approach achieves or matches the state-of-the-art performance in four graph learning tasks, including semi-supervised node classification, multi-task graph classification, graph regression, and link prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shelly发布了新的文献求助80
刚刚
夺格发布了新的文献求助10
2秒前
2秒前
ally完成签到,获得积分10
3秒前
3秒前
sxr完成签到,获得积分10
3秒前
梁初见完成签到,获得积分10
3秒前
29完成签到,获得积分20
3秒前
思源应助剁手党采纳,获得10
3秒前
sonder发布了新的文献求助10
3秒前
肥牛芋泥泥完成签到,获得积分10
4秒前
hiffen驳回了Jasper应助
4秒前
4秒前
4秒前
zezeze11111111完成签到,获得积分20
4秒前
4秒前
dd完成签到 ,获得积分10
4秒前
5秒前
5秒前
離醜完成签到,获得积分10
5秒前
11发布了新的文献求助10
5秒前
6秒前
滚去学习发布了新的文献求助10
6秒前
傅荣轩完成签到,获得积分10
6秒前
Hello应助傲娇的觅翠采纳,获得10
7秒前
7秒前
8秒前
朴实涵山完成签到 ,获得积分10
9秒前
ding应助zp19951015采纳,获得10
9秒前
文献互助1发布了新的文献求助20
9秒前
9秒前
10秒前
乐乐应助风雅采纳,获得10
10秒前
自業自得完成签到 ,获得积分10
10秒前
朝花夕拾完成签到,获得积分10
10秒前
10秒前
11秒前
科研混子发布了新的文献求助30
12秒前
cccan发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5318577
求助须知:如何正确求助?哪些是违规求助? 4460663
关于积分的说明 13879648
捐赠科研通 4351219
什么是DOI,文献DOI怎么找? 2389786
邀请新用户注册赠送积分活动 1383795
关于科研通互助平台的介绍 1353358