AM-GCN: Adaptive Multi-channel Graph Convolutional Networks

计算机科学 图形 节点(物理) 拓扑(电路) 理论计算机科学 人工智能 数据挖掘 数学 工程类 结构工程 组合数学
作者
Xiao Wang,Meiqi Zhu,Deyu Bo,Peng Cui,Chuan Shi,Jian Pei
出处
期刊:Cornell University - arXiv 卷期号:: 1243-1253 被引量:352
标识
DOI:10.1145/3394486.3403177
摘要

Graph Convolutional Networks (GCNs) have gained great popularity in tackling various analytics tasks on graph and network data. However, some recent studies raise concerns about whether GCNs can optimally integrate node features and topological structures in a complex graph with rich information. In this paper, we first present an experimental investigation. Surprisingly, our experimental results clearly show that the capability of the state-of-the-art GCNs in fusing node features and topological structures is distant from optimal or even satisfactory. The weakness may severely hinder the capability of GCNs in some classification tasks, since GCNs may not be able to adaptively learn some deep correlation information between topological structures and node features. Can we remedy the weakness and design a new type of GCNs that can retain the advantages of the state-of-the-art GCNs and, at the same time, enhance the capability of fusing topological structures and node features substantially? We tackle the challenge and propose an adaptive multi-channel graph convolutional networks for semi-supervised classification (AM-GCN). The central idea is that we extract the specific and common embeddings from node features, topological structures, and their combinations simultaneously, and use the attention mechanism to learn adaptive importance weights of the embeddings. Our extensive experiments on benchmark data sets clearly show that AM-GCN extracts the most correlated information from both node features and topological structures substantially, and improves the classification accuracy with a clear margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI2S应助酷炫的__采纳,获得10
1秒前
1秒前
陈德发布了新的文献求助10
3秒前
3秒前
孙不缺完成签到,获得积分10
3秒前
4秒前
siyan156发布了新的文献求助10
6秒前
木九黎完成签到,获得积分10
8秒前
小小阿杰完成签到,获得积分10
8秒前
9秒前
HMBB发布了新的文献求助10
9秒前
刚刚好完成签到,获得积分10
11秒前
英俊的铭应助xu采纳,获得10
14秒前
神内小天使完成签到,获得积分10
15秒前
doudou完成签到,获得积分10
15秒前
15秒前
汉堡包应助小智采纳,获得10
15秒前
高贵魂幽完成签到,获得积分10
18秒前
ganjqly应助陈德采纳,获得10
19秒前
水电费完成签到,获得积分10
21秒前
11完成签到,获得积分10
23秒前
siyan156完成签到 ,获得积分10
24秒前
小智完成签到,获得积分10
24秒前
leng完成签到 ,获得积分10
24秒前
丘比特应助踏实小蘑菇采纳,获得10
24秒前
YY完成签到,获得积分0
25秒前
科研通AI2S应助星期五采纳,获得10
26秒前
27秒前
27秒前
今后应助坚强西牛采纳,获得10
27秒前
mm完成签到,获得积分10
29秒前
苏南完成签到 ,获得积分10
30秒前
zhenzhen完成签到,获得积分10
30秒前
30秒前
我超凶的发布了新的文献求助20
30秒前
31秒前
lbx完成签到 ,获得积分10
31秒前
深情安青应助sdl采纳,获得10
32秒前
33秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963841
求助须知:如何正确求助?哪些是违规求助? 3509723
关于积分的说明 11148644
捐赠科研通 3243530
什么是DOI,文献DOI怎么找? 1792128
邀请新用户注册赠送积分活动 873506
科研通“疑难数据库(出版商)”最低求助积分说明 803808