Marine Predators Algorithm: A nature-inspired metaheuristic

元启发式 计算机科学 算法 捕食 竞赛(生物学) 觅食 数学优化 生态学 数学 生物
作者
Afshin Faramarzi,Mohammad Heidarinejad,Seyedali Mirjalili,Amir H. Gandomi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:152: 113377-113377 被引量:1800
标识
DOI:10.1016/j.eswa.2020.113377
摘要

This paper presents a nature-inspired metaheuristic called Marine Predators Algorithm (MPA) and its application in engineering. The main inspiration of MPA is the widespread foraging strategy namely Lévy and Brownian movements in ocean predators along with optimal encounter rate policy in biological interaction between predator and prey. MPA follows the rules that naturally govern in optimal foraging strategy and encounters rate policy between predator and prey in marine ecosystems. This paper evaluates the MPA's performance on twenty-nine test functions, test suite of CEC-BC-2017, randomly generated landscape, three engineering benchmarks, and two real-world engineering design problems in the areas of ventilation and building energy performance. MPA is compared with three classes of existing optimization methods, including (1) GA and PSO as the most well-studied metaheuristics, (2) GSA, CS and SSA as almost recently developed algorithms and (3) CMA-ES, SHADE and LSHADE-cnEpSin as high performance optimizers and winners of IEEE CEC competition. Among all methods, MPA gained the second rank and demonstrated very competitive results compared to LSHADE-cnEpSin as the best performing method and one of the winners of CEC 2017 competition. The statistical post hoc analysis revealed that MPA can be nominated as a high-performance optimizer and is a significantly superior algorithm than GA, PSO, GSA, CS, SSA and CMA-ES while its performance is statistically similar to SHADE and LSHADE-cnEpSin. The source code is publicly available at: https://github.com/afshinfaramarzi/Marine-Predators-Algorithm, http://built-envi.com/portfolio/marine-predators-algorithm/, https://www.mathworks.com/matlabcentral/fileexchange/74578-marine-predators-algorithm-mpa, and http://www.alimirjalili.com/MPA.html.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助白冷之采纳,获得10
刚刚
LLLLL完成签到,获得积分10
1秒前
1秒前
2秒前
章鱼哥想毕业完成签到 ,获得积分10
3秒前
LLLLL发布了新的文献求助10
4秒前
4秒前
5秒前
HX发布了新的文献求助30
6秒前
kuku应助chenmeimei2012采纳,获得10
6秒前
Durant发布了新的文献求助20
7秒前
棋鬼王发布了新的文献求助10
7秒前
7秒前
小栗完成签到,获得积分20
10秒前
小小发布了新的文献求助10
12秒前
Maxine完成签到 ,获得积分10
14秒前
14秒前
汉堡包应助怕黑宛采纳,获得20
14秒前
14秒前
yul关闭了yul文献求助
14秒前
快快找到你完成签到,获得积分10
15秒前
健忘症发布了新的文献求助10
21秒前
23秒前
24秒前
24秒前
26秒前
梦丽有人发布了新的文献求助30
27秒前
HX完成签到,获得积分10
28秒前
小马甲应助kangyan采纳,获得10
29秒前
小欧文发布了新的文献求助10
29秒前
冷萃咖啡完成签到,获得积分10
30秒前
村上种树完成签到,获得积分10
31秒前
怕黑宛发布了新的文献求助20
31秒前
syalonyui发布了新的文献求助10
31秒前
夏欣发布了新的文献求助10
31秒前
guozizi发布了新的文献求助30
32秒前
深情安青应助小颜采纳,获得10
34秒前
梦丽有人完成签到,获得积分10
39秒前
端庄的云朵完成签到,获得积分10
41秒前
41秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Assessing organizational change : A guide to methods, measures, and practices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3903658
求助须知:如何正确求助?哪些是违规求助? 3448463
关于积分的说明 10853089
捐赠科研通 3173894
什么是DOI,文献DOI怎么找? 1753644
邀请新用户注册赠送积分活动 847795
科研通“疑难数据库(出版商)”最低求助积分说明 790473