诱导多能干细胞
药物发现
疾病
机制(生物学)
基因调控网络
心脏病
生物网络
计算生物学
医学
计算机科学
生物信息学
生物
基因
基因表达
病理
生物化学
认识论
哲学
胚胎干细胞
作者
Christina V. Theodoris,Ping Zhou,Lei Liu,Yu Zhang,Tomohiro Nishino,Yu Huang,Aleksandra Kostina,Sanjeev S. Ranade,Casey A. Gifford,Vladimir Uspenskiy,Anna Malashicheva,Sheng Ding,Deepak Srivastava
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2020-12-10
卷期号:371 (6530)
被引量:100
标识
DOI:10.1126/science.abd0724
摘要
Machine learning for medicine Small-molecule screens aimed at identifying therapeutic candidates traditionally search for molecules that affect one to several outputs at most, limiting discovery of true disease-modifying drugs. Theodoris et al. developed a machine-learning approach to identify small molecules that broadly correct gene networks dysregulated in a human induced pluripotent stem cell disease model of a common form of heart disease involving the aortic valve. Gene network correction by the most efficacious therapeutic candidate generalized to primary aortic valve cells derived from more than 20 patients with sporadic aortic valve disease and prevented aortic valve disease in vivo in a mouse model. Science , this issue p. eabd0724
科研通智能强力驱动
Strongly Powered by AbleSci AI