Artificial intelligence-based classification of schizophrenia: A high density electroencephalographic and support vector machine study

支持向量机 人工智能 模式识别(心理学) 脑电图 精神分裂症(面向对象编程) 接收机工作特性 计算机科学 机器学习 心理学 精神科 程序设计语言
作者
Sai Krishna Tikka,Bikesh Kumar Singh,SHaque Nizamie,Shobit Garg,Sunandan Mandal,Kavita Thakur,LokeshKumar Singh
出处
期刊:Indian Journal of Psychiatry [Medknow]
卷期号:62 (3): 273-273 被引量:34
标识
DOI:10.4103/psychiatry.indianjpsychiatry_91_20
摘要

Interview-based schizophrenia (SCZ) diagnostic methods are not completely valid. Moreover, SCZ-the disease entity is very heterogeneous. Supervised-Machine-Learning (sML) application of Artificial-Intelligence holds a tremendous promise in solving these issues.To sML-based discriminating validity of resting-state electroencephalographic (EEG) quantitative features in classifying SCZ from healthy and, positive (PS) and negative symptom (NS) subgroups, using a high-density recording.Data collected at a tertiary care mental-health institute using a cross-sectional study design and analyzed at a premier Engineering Institute.Data of 38-SCZ patients and 20-healthy controls were retrieved. The positive-negative subgroup classification was done using Positive and Negative Syndrome Scale operational-criteria. EEG was recorded using 256-channel high-density equipment. Eight priori regions-of-interest were selected. Six-level wavelet decomposition and Kernel-Support Vector Machine (SVM) method were used for feature extraction and data classification.Mann-Whitney test was used for comparison of machine learning-features. Accuracy, sensitivity, specificity, and area under receiver operating characteristics-curve were measured as discriminatory indices of classifications.Accuracy of classifying SCZ from healthy and PS from NS SCZ, were 78.95% and 89.29%, respectively. While beta and gamma frequency related features most accurately classified SCZ from healthy controls, delta and theta frequency related features most accurately classified positive from negative SCZ. Inferior frontal gyrus features most accurately contributed to both the classificatory instances.SVM-based classification and sub-classification of SCZ using EEG data is optimal and might help in improving the "validity" and reducing the "heterogeneity" in the diagnosis of SCZ. These results might only be generalized to acute and moderately ill male SCZ patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助周四一采纳,获得30
刚刚
隐形曼青应助Dr大壮采纳,获得10
刚刚
黄天发布了新的文献求助10
1秒前
大鲨碧完成签到,获得积分10
1秒前
所所应助张可采纳,获得10
2秒前
欧米发布了新的文献求助10
4秒前
5秒前
DW发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
敏感白翠完成签到,获得积分10
8秒前
土豆你个西红柿完成签到,获得积分10
8秒前
cyy完成签到,获得积分10
10秒前
10秒前
yuaner发布了新的文献求助10
10秒前
Ree发布了新的文献求助10
10秒前
11秒前
充电宝应助aurora采纳,获得10
12秒前
小马甲应助黄天采纳,获得10
12秒前
飘逸的虔完成签到,获得积分10
12秒前
张可发布了新的文献求助10
13秒前
15秒前
nv完成签到,获得积分10
15秒前
16秒前
在水一方应助两条鱼采纳,获得10
18秒前
18秒前
18秒前
花生米35发布了新的文献求助10
19秒前
19秒前
maox1aoxin应助书剑飞侠采纳,获得30
19秒前
19秒前
OK了老科发布了新的文献求助10
19秒前
贺贺发布了新的文献求助10
20秒前
科研通AI5应助liu采纳,获得10
20秒前
科研通AI5应助冬虫草采纳,获得100
20秒前
研友_VZG7GZ应助Ree采纳,获得10
21秒前
Taurusbyx发布了新的文献求助10
21秒前
咕咕完成签到,获得积分20
21秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814868
求助须知:如何正确求助?哪些是违规求助? 3358972
关于积分的说明 10398999
捐赠科研通 3076429
什么是DOI,文献DOI怎么找? 1689822
邀请新用户注册赠送积分活动 813323
科研通“疑难数据库(出版商)”最低求助积分说明 767599