Bioinformatics-assisted, integrated omics studies on medicinal plants

生物 数据科学 生物信息学 系统生物学 基因组 鉴定(生物学)
作者
Xiaoxia Ma,Yijun Meng,Pu Wang,Zhonghai Tang,Huizhong Wang,Tian Xie
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:21 (6): 1857-1874 被引量:22
标识
DOI:10.1093/bib/bbz132
摘要

The immense therapeutic and economic values of medicinal plants have attracted increasing attention from the worldwide researchers. It has been recognized that production of the authentic and high-quality herbal drugs became the prerequisite for maintaining the healthy development of the traditional medicine industry. To this end, intensive research efforts have been devoted to the basic studies, in order to pave a way for standardized authentication of the plant materials, and bioengineering of the metabolic pathways in the medicinal plants. In this paper, the recent advances of omics studies on the medicinal plants were summarized from several aspects, including phenomics and taxonomics, genomics, transcriptomics, proteomics and metabolomics. We proposed a multi-omics data-based workflow for medicinal plant research. It was emphasized that integration of the omics data was important for plant authentication and mechanistic studies on plant metabolism. Additionally, the computational tools for proper storage, efficient processing and high-throughput analyses of the omics data have been introduced into the workflow. According to the workflow, authentication of the medicinal plant materials should not only be performed at the phenomics level but also be implemented by genomic and metabolomic marker-based examination. On the other hand, functional genomics studies, transcriptional regulatory networks and protein-protein interactions will contribute greatly for deciphering the secondary metabolic pathways. Finally, we hope that our work could inspire further efforts on the bioinformatics-assisted, integrated omics studies on the medicinal plants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
Mengjie完成签到,获得积分10
2秒前
华仔应助机灵又蓝采纳,获得10
2秒前
2秒前
2秒前
格拉希尔完成签到 ,获得积分10
2秒前
直率的冰海完成签到,获得积分10
2秒前
英姑应助小刘采纳,获得10
3秒前
fanssw完成签到 ,获得积分10
3秒前
4秒前
小林完成签到 ,获得积分10
4秒前
4秒前
呱呱乐发布了新的文献求助10
5秒前
果果发布了新的文献求助10
5秒前
哭泣乌发布了新的文献求助10
5秒前
5秒前
ccm发布了新的文献求助10
5秒前
胡树发布了新的文献求助10
6秒前
害羞的花生完成签到,获得积分20
6秒前
情怀应助Jasmine采纳,获得10
6秒前
6秒前
6秒前
清脆从蓉完成签到,获得积分20
6秒前
xywang完成签到,获得积分10
6秒前
寄寄寄寄寄了完成签到,获得积分20
7秒前
关琦完成签到,获得积分10
7秒前
陈琳完成签到,获得积分10
7秒前
长情箴完成签到 ,获得积分10
8秒前
zhanzhanzhan完成签到,获得积分10
8秒前
Elytra完成签到,获得积分10
8秒前
8秒前
我是老大应助G浅浅采纳,获得10
9秒前
gu完成签到,获得积分10
9秒前
9秒前
所所应助梅梅超勇敢采纳,获得10
10秒前
吴兰田完成签到,获得积分10
10秒前
清秀送终发布了新的文献求助10
10秒前
10秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
On translated images, stereotypes and disciplines 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834256
求助须知:如何正确求助?哪些是违规求助? 3376847
关于积分的说明 10495379
捐赠科研通 3096271
什么是DOI,文献DOI怎么找? 1704904
邀请新用户注册赠送积分活动 820296
科研通“疑难数据库(出版商)”最低求助积分说明 771940