MAP-Net: Multiple Attending Path Neural Network for Building Footprint Extraction From Remote Sensed Imagery

足迹 卷积神经网络 联营 计算机科学 模式识别(心理学) 分割 特征提取 人工智能 棱锥(几何) 特征(语言学) 路径(计算) 计算机视觉 深度学习 地理 数学 哲学 语言学 考古 程序设计语言 几何学
作者
Qing Zhu,Cheng Liao,Hu Han,Xiaohong Mei,Haifeng Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (7): 6169-6181 被引量:125
标识
DOI:10.1109/tgrs.2020.3026051
摘要

Building footprint extraction is a basic task in the fields of mapping, image understanding, computer vision, and so on. Accurately and efficiently extracting building footprints from a wide range of remote sensed imagery remains a challenge due to the complex structures, variety of scales, and diverse appearances of buildings. Existing convolutional neural network (CNN)-based building extraction methods are criticized for their inability to detect tiny buildings because the spatial information of CNN feature maps is lost during repeated pooling operations of the CNN. In addition, large buildings still have inaccurate segmentation edges. Moreover, features extracted by a CNN are always partially restricted by the size of the receptive field, and large-scale buildings with low texture are always discontinuous and holey when extracted. To alleviate these problems, multiscale strategies are introduced in the latest research works to extract buildings with different scales. The features with higher resolution generally extracted from shallow layers, which extracted insufficient semantic information for tiny buildings. This article proposes a novel multiple attending path neural network (MAP-Net) for accurately extracting multiscale building footprints and precise boundaries. Unlike existing multiscale feature extraction strategies, MAP-Net learns spatial localization-preserved multiscale features through a multiparallel path in which each stage is gradually generated to extract high-level semantic features with fixed resolution. Then, an attention module adaptively squeezes the channel-wise features extracted from each path for optimized multiscale fusion, and a pyramid spatial pooling module captures global dependence for refining discontinuous building footprints. Experimental results show that our method achieved 0.88%, 0.93%, and 0.45% F1-score and 1.53%, 1.50%, and 0.82% intersection over union (IoU) score improvements without increasing computational complexity compared with the latest HRNetv2 on the Urban 3-D, Deep Globe, and WHU data sets, respectively. Specifically, MAP-Net outperforms multiscale aggregation fully convolutional network (MA-FCN), which is the state-of-the-art (SOTA) algorithms with postprocessing and model voting strategies, on the WHU data set without pretraining and postprocessing. The TensorFlow implementation is available at https://github.com/lehaifeng/MAPNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
亦犹未进发布了新的文献求助10
1秒前
上官若男应助瓜瓜叽叽采纳,获得10
1秒前
2秒前
2秒前
Hans发布了新的文献求助10
2秒前
嘿嘿完成签到,获得积分10
3秒前
燕燕于飞发布了新的文献求助10
3秒前
CH发布了新的文献求助20
3秒前
晴天完成签到,获得积分10
3秒前
4秒前
5秒前
赵瑞完成签到,获得积分10
5秒前
hu完成签到,获得积分10
5秒前
mix完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
6秒前
111完成签到,获得积分20
8秒前
寒冷的世界完成签到 ,获得积分10
8秒前
张亚慧发布了新的文献求助10
9秒前
liutengfei123发布了新的文献求助10
9秒前
9秒前
yuaner发布了新的文献求助10
10秒前
活泼可冥完成签到,获得积分20
11秒前
chili完成签到,获得积分10
11秒前
dongdong发布了新的文献求助10
11秒前
11秒前
风中的非笑完成签到,获得积分10
12秒前
12秒前
脑洞疼应助啦啦啦采纳,获得10
12秒前
乌龟娟发布了新的文献求助10
13秒前
XLtx完成签到,获得积分10
13秒前
YOLO完成签到,获得积分10
13秒前
周周完成签到,获得积分20
14秒前
Zzz完成签到,获得积分10
14秒前
飘逸楷瑞完成签到,获得积分10
14秒前
嗯呐完成签到,获得积分10
15秒前
15秒前
16秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Single Element Semiconductors: Properties and Devices 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828567
求助须知:如何正确求助?哪些是违规求助? 3370964
关于积分的说明 10465587
捐赠科研通 3090872
什么是DOI,文献DOI怎么找? 1700578
邀请新用户注册赠送积分活动 817907
科研通“疑难数据库(出版商)”最低求助积分说明 770588