控制理论(社会学)
稳健性(进化)
循环神经网络
人工神经网络
估计员
非线性系统
滑模控制
控制(管理)
计算机科学
数学
人工智能
物理
基因
统计
量子力学
生物化学
化学
出处
期刊:IEEE Transactions on Circuits and Systems Ii-express Briefs
[Institute of Electrical and Electronics Engineers]
日期:2019-11-12
卷期号:67 (11): 2522-2526
被引量:104
标识
DOI:10.1109/tcsii.2019.2953223
摘要
In this brief, a fractional-order sliding mode control (FSMC) scheme using a recurrent neural network (RNN) approximator is introduced to achieve better performance for a shunt active power filter (APF). The proposed RNNFSMC scheme combines a fractional-order sliding mode control method with a recurrent neural network structure. The fractional-order sliding mode control has more adjustable degree of freedom to brings more superior control effect than integer order sliding mode control. The RNN estimator is employed to approximate the unknown nonlinear function of the APF. Experimental results are presented to show the effectiveness of the proposed strategy, demonstrating the outstanding compensation performance and strong robustness compared with standard neural sliding mode controller.
科研通智能强力驱动
Strongly Powered by AbleSci AI