Comparing the Performance of an Autoregressive State-Space Approach to the Linear Regression and Artificial Neural Network for Streamflow Estimation

自回归模型 人工神经网络 水流 状态空间 线性回归 回归 估计 计量经济学 国家(计算机科学) 状态空间表示 回归分析 计算机科学 统计 人工智能 数学 工程类 地理 算法 地图学 流域 系统工程
作者
Yang Yang,Tao Huang,Yuzhi Shi,Ole Wendroth,B. Y. Liu
出处
期刊:Journal of Environmental Informatics [International Society for Environmental Information Sciences]
被引量:8
标识
DOI:10.3808/jei.202000440
摘要

Accurate streamflow estimation remains a great challenge although diverse modeling techniques have been developed during recent decades. In contrast to the process based models, the empirical data driven methods are easy to operate, require low computing capacity and yield fairly accurate outcomes, among which the state space (STATE) approach takes use of the temporal structures inherent in streamflow series and serves as a feasible solution for streamflow estimation. Yet this method has rarely been applied, neither its comparison with other methods. The objective was to compare the performance of an autoregressive STATE approach to the traditional multiple linear regression and artificial neural network in simulating annual streamflow series of 15 catchments located in the Loess Plateau of China. Annual data of streamflow (Q), precipitation (P) and potential evapotranspiration (PET) during 1961 ~ 2013 were collected. The results show that STATE was generally the most accurate method for Q estimation, explaining almost 90% of the total variance averaged over all the 15 catchments. The estimation of streamflow relied on its own of the previous year for most catchments. Besides, the impacts of P and PET on the temporal distribution of streamflow were almost equal. Missing data were estimated using the STATE method, which allowed inter annual trend analysis of the streamflow. Significant downward trends were manifested at all the 15 catchments during the study period and the corresponding slopes ranged from 0.24 to 1.71 mm/y. These findings hold important implications for hydrological modelling and management in China's Loess Plateau and other arid and semi-arid regions

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清欢完成签到,获得积分10
16秒前
hellokitty完成签到,获得积分10
19秒前
cdercder应助oleskarabach采纳,获得10
21秒前
cdercder应助oleskarabach采纳,获得10
21秒前
火星上的之卉完成签到 ,获得积分10
29秒前
大力的诗蕾完成签到 ,获得积分10
32秒前
CLTTT完成签到,获得积分10
35秒前
Cai完成签到,获得积分10
44秒前
颜陌完成签到,获得积分10
48秒前
51秒前
崩溃完成签到,获得积分10
51秒前
zmy完成签到,获得积分10
51秒前
DDDazhi完成签到,获得积分10
52秒前
zmy发布了新的文献求助30
57秒前
1分钟前
天天快乐应助斯文的傲珊采纳,获得10
1分钟前
拼搏的败完成签到 ,获得积分10
1分钟前
alanbike完成签到,获得积分10
1分钟前
不秃燃的小老弟完成签到 ,获得积分10
1分钟前
fabius0351完成签到 ,获得积分10
1分钟前
陈秋完成签到,获得积分10
1分钟前
小瓶盖完成签到 ,获得积分10
1分钟前
Never stall完成签到 ,获得积分10
1分钟前
隐形曼青应助麦冬粑粑采纳,获得10
1分钟前
千玺的小粉丝儿完成签到,获得积分10
2分钟前
哥哥完成签到,获得积分10
2分钟前
贼吖完成签到 ,获得积分10
2分钟前
河鲸完成签到 ,获得积分10
2分钟前
温馨完成签到 ,获得积分10
2分钟前
共享精神应助俏皮的修杰采纳,获得20
2分钟前
Jankim完成签到 ,获得积分10
2分钟前
飞云完成签到 ,获得积分10
2分钟前
Young完成签到 ,获得积分10
2分钟前
谦让的牛排完成签到 ,获得积分10
2分钟前
热狗完成签到 ,获得积分10
2分钟前
超级的千青完成签到 ,获得积分10
2分钟前
刘五十七完成签到 ,获得积分10
2分钟前
墨泉完成签到 ,获得积分10
2分钟前
Hofury完成签到 ,获得积分10
2分钟前
美满的皮卡丘完成签到 ,获得积分10
3分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784835
求助须知:如何正确求助?哪些是违规求助? 3330070
关于积分的说明 10244310
捐赠科研通 3045450
什么是DOI,文献DOI怎么找? 1671691
邀请新用户注册赠送积分活动 800613
科研通“疑难数据库(出版商)”最低求助积分说明 759544