Traditional Chinese medicine network pharmacology: theory, methodology and application

中医药 系统药理学 药物发现 传统医学 系统生物学 生物网络 医学 药理学 计算机科学 药品 替代医学 计算生物学 生物信息学 生物 病理
作者
Shao Li,Bo Zhang
出处
期刊:Chinese Journal of Natural Medicines [Elsevier BV]
卷期号:11 (2): 110-120 被引量:1192
标识
DOI:10.1016/s1875-5364(13)60037-0
摘要

Traditional Chinese medicine (TCM) has a long history of viewing an individual or patient as a system with different statuses, and has accumulated numerous herbal formulae. The holistic philosophy of TCM shares much with the key ideas of emerging network pharmacology and network biology, and meets the requirements of overcoming complex diseases, such as cancer, in a systematic manner. To discover TCM from a systems perspective and at the molecular level, a novel TCM network pharmacology approach was established by updating the research paradigm from the current “one target, one drug” mode to a new “network target, multi-components” mode. Subsequently, a set of TCM network pharmacology methods were created to prioritize disease-associated genes, to predict the target profiles and pharmacological actions of herbal compounds, to reveal drug-gene-disease co-module associations, to screen synergistic multi-compounds from herbal formulae in a high-throughput manner, and to interpret the combinatorial rules and network regulation effects of herbal formulae. The effectiveness of the network-based methods was demonstrated for the discovery of bioactive compounds and for the elucidation of the mechanisms of action of herbal formulae, such as Qing-Luo-Yin and the Liu-Wei-Di-Huang pill. The studies suggest that the TCM network pharmacology approach provides a new research paradigm for translating TCM from an experience-based medicine to an evidence-based medicine system, which will accelerate TCM drug discovery, and also improve current drug discovery strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现代访梦完成签到 ,获得积分10
刚刚
刚刚
程正非发布了新的文献求助10
刚刚
周凡淇发布了新的文献求助20
刚刚
xiyou完成签到,获得积分10
1秒前
守护完成签到,获得积分20
1秒前
1秒前
烟花应助Magicer采纳,获得10
1秒前
2秒前
2秒前
无情的海露完成签到,获得积分10
2秒前
YY再摆烂发布了新的文献求助10
2秒前
zhao发布了新的文献求助10
2秒前
2秒前
2秒前
Zoie发布了新的文献求助10
2秒前
2秒前
3秒前
郑方形完成签到,获得积分20
3秒前
3秒前
3秒前
3秒前
3秒前
天天快乐应助顶顶小明采纳,获得10
4秒前
chl完成签到,获得积分10
4秒前
似水年华完成签到 ,获得积分10
4秒前
刘美静发布了新的文献求助10
4秒前
4秒前
Lulu完成签到,获得积分10
5秒前
外向沅发布了新的文献求助10
5秒前
xiyou发布了新的文献求助10
6秒前
简单山水完成签到,获得积分10
6秒前
6秒前
hahhhah完成签到 ,获得积分10
7秒前
yoou驳回了浮游应助
7秒前
无奈的中道关注了科研通微信公众号
7秒前
善学以致用应助YY再摆烂采纳,获得10
7秒前
7秒前
称心曼安应助程程采纳,获得10
7秒前
未知发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5072099
求助须知:如何正确求助?哪些是违规求助? 4292584
关于积分的说明 13375086
捐赠科研通 4113598
什么是DOI,文献DOI怎么找? 2252529
邀请新用户注册赠送积分活动 1257381
关于科研通互助平台的介绍 1190193