弹性蛋白
伤口愈合
生物
小RNA
免疫印迹
细胞生物学
细胞外基质
信号转导
分子生物学
免疫学
基因
生物化学
遗传学
作者
Xiaoyan Li,Lijia Guo,Yi Liu,Yingying Su,Yongmei Xie,Juan Du,Songling Wang,Hao Wang
标识
DOI:10.1016/j.yexcr.2017.11.019
摘要
Wound healing is regulated by a complex network of cells, molecules, and cytokines, as well as microRNAs (miRNAs). miRNAs were confirmed to influence the wound healing process, and miR-21, an important member of the miRNA family, was also shown to regulate wound healing. The aim of the present study was to investigate the role of miR-21 in the wound healing process and the possible underlying cell signaling pathways. We isolated GMSCs from WT and miR-21-KO mouse gingiva. Flow cytometric analysis and immunocytofluorescense staining were used to identify the GMSCs acquired from WT and miR-21-KO mice. RT-PCR, western blot analysis and immunohistofluorescence staining were performed to examine the expression of extracellular matrix components and key proteins of cell signaling pathways. TargetScan and pmiR-RB-REPORT vectors were used to verify that Smad7 was a direct target of miR-21. Compared to WT mice, miR-21-KO mice showed slower wound healing. RT-PCR and western blot analysis indicated that Elastin expression was downregulated in miR-21-deficient samples. We confirmed that Smad7 was a direct target of miR-21. miR-21 knockout resulted in increased expression of Smad7 and impaired phosphorylation of the Smad2/3 complex. The expression of the Smad7-Smad2/3-Elastin axis in palate tissues sections acquired from WT and miR-21-KO mice showed the same trend. Based on all these results, we demonstrated that miR-21 promoted the wound healing process via the Smad7-Smad2/3-Elastin pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI