清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Single-cell RNA-seq interpretations using evolutionary multiobjective ensemble pruning

可扩展性 聚类分析 计算机科学 修剪 维数之咒 数据挖掘 降维 兰德指数 人工智能 层次聚类 生物 农学 数据库
作者
Xiangtao Li,Shixiong Zhang,Ka‐Chun Wong
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:35 (16): 2809-2817 被引量:27
标识
DOI:10.1093/bioinformatics/bty1056
摘要

Abstract Motivation In recent years, single-cell RNA sequencing enables us to discover cell types or even subtypes. Its increasing availability provides opportunities to identify cell populations from single-cell RNA-seq data. Computational methods have been employed to reveal the gene expression variations among multiple cell populations. Unfortunately, the existing ones can suffer from realistic restrictions such as experimental noises, numerical instability, high dimensionality and computational scalability. Results We propose an evolutionary multiobjective ensemble pruning algorithm (EMEP) that addresses those realistic restrictions. Our EMEP algorithm first applies the unsupervised dimensionality reduction to project data from the original high dimensions to low-dimensional subspaces; basic clustering algorithms are applied in those new subspaces to generate different clustering results to form cluster ensembles. However, most of those cluster ensembles are unnecessarily bulky with the expense of extra time costs and memory consumption. To overcome that problem, EMEP is designed to dynamically select the suitable clustering results from the ensembles. Moreover, to guide the multiobjective ensemble evolution, three cluster validity indices including the overall cluster deviation, the within-cluster compactness and the number of basic partition clusters are formulated as the objective functions to unleash its cell type discovery performance using evolutionary multiobjective optimization. We applied EMEP to 55 simulated datasets and seven real single-cell RNA-seq datasets, including six single-cell RNA-seq dataset and one large-scale dataset with 3005 cells and 4412 genes. Two case studies are also conducted to reveal mechanistic insights into the biological relevance of EMEP. We found that EMEP can achieve superior performance over the other clustering algorithms, demonstrating that EMEP can identify cell populations clearly. Availability and implementation EMEP is written in Matlab and available at https://github.com/lixt314/EMEP Supplementary information Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
23秒前
27秒前
方白秋完成签到,获得积分0
41秒前
北辰zdx完成签到,获得积分10
1分钟前
1分钟前
佳佳发布了新的文献求助10
1分钟前
丘比特应助佳佳采纳,获得10
1分钟前
Criminology34发布了新的文献求助500
1分钟前
jason完成签到,获得积分0
1分钟前
木冉完成签到 ,获得积分10
1分钟前
Kevin完成签到 ,获得积分10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
忘忧Aquarius完成签到,获得积分10
3分钟前
和风完成签到 ,获得积分10
4分钟前
不能吃太饱完成签到 ,获得积分10
4分钟前
合不着完成签到 ,获得积分10
4分钟前
852应助leonzhou采纳,获得10
5分钟前
酷波er应助yf采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
ZZyy完成签到 ,获得积分10
5分钟前
5分钟前
leonzhou发布了新的文献求助10
6分钟前
laohei94_6完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
yf完成签到 ,获得积分10
6分钟前
廿二完成签到,获得积分10
6分钟前
6分钟前
熹熹发布了新的文献求助10
7分钟前
7分钟前
学渣完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651129
求助须知:如何正确求助?哪些是违规求助? 4783387
关于积分的说明 15053149
捐赠科研通 4809854
什么是DOI,文献DOI怎么找? 2572694
邀请新用户注册赠送积分活动 1528665
关于科研通互助平台的介绍 1487687