A fast DBSCAN algorithm for big data based on efficient density calculation

数据库扫描 聚类分析 计算机科学 数据挖掘 数据集 集合(抽象数据类型) 大数据 算法 样品(材料) CURE数据聚类算法 相关聚类 模式识别(心理学) 人工智能 色谱法 化学 程序设计语言
作者
Nooshin Hanafi,Hamid Saadatfar
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:203: 117501-117501 被引量:51
标识
DOI:10.1016/j.eswa.2022.117501
摘要

Today, data is being generated with a high speed. Managing large volume of data has become a challenge in the current age. Clustering is a method to analyze data that is generated in the Internet. Various approaches have been presented for data clustering until now. Among them, DBSCAN is a most well-known density-based clustering algorithm. This algorithm can detect clusters of different shapes and does not require prior knowledge about the number of clusters. A major part of the DBSCAN run-time is spent to calculate the distance of data from each other to find the neighbors of each sample in the dataset. The time complexity of this algorithm is O(n2); Therefore, it is not suitable for processing big datasets. In this paper, DBSCAN is improved so that it can be applied to big datasets. The proposed method calculates accurately each sample density based on a reduced set of data. This reduced set is called the operational set. This collection is updated periodically. The use of local samples to calculate the density has greatly reduced the computational cost of clustering. The empirical results on various datasets of different sizes and dimensions show that the proposed algorithm increases the clustering speed compared to recent related works while having similar accuracy as the original DBSCAN algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc发布了新的文献求助10
2秒前
陶ni吉吉完成签到,获得积分10
4秒前
ding应助善良的沛山采纳,获得10
4秒前
yousa发布了新的文献求助10
4秒前
田様应助二指弹采纳,获得10
4秒前
leoric完成签到,获得积分10
4秒前
俏皮的采蓝完成签到 ,获得积分10
4秒前
都是完成签到,获得积分20
5秒前
星辰大海应助知性小蝴蝶采纳,获得10
5秒前
6秒前
kyt完成签到,获得积分10
6秒前
猪猪hero发布了新的文献求助10
6秒前
张嘉慧完成签到,获得积分10
7秒前
大林发布了新的文献求助10
7秒前
灵巧代柔完成签到,获得积分10
8秒前
cc完成签到,获得积分10
8秒前
8秒前
苗条一兰完成签到,获得积分10
8秒前
ws556发布了新的文献求助10
9秒前
易止完成签到 ,获得积分10
9秒前
9秒前
等待冬亦应助咖可乐采纳,获得10
9秒前
懵懂的雪糕完成签到 ,获得积分10
9秒前
lx1199完成签到,获得积分10
9秒前
贪玩的莫英完成签到,获得积分10
9秒前
10秒前
科研人完成签到 ,获得积分10
10秒前
端庄千琴完成签到,获得积分10
11秒前
科研通AI5应助饱满小兔子采纳,获得10
11秒前
赘婿应助angel采纳,获得10
11秒前
luyuran发布了新的文献求助10
11秒前
doctor杨发布了新的文献求助10
11秒前
Li完成签到,获得积分10
11秒前
11秒前
大林完成签到,获得积分20
11秒前
12秒前
烂漫明轩完成签到,获得积分10
13秒前
13秒前
希望天下0贩的0应助茶弥采纳,获得10
13秒前
CHUXIU完成签到,获得积分10
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834697
求助须知:如何正确求助?哪些是违规求助? 3377202
关于积分的说明 10497023
捐赠科研通 3096605
什么是DOI,文献DOI怎么找? 1705084
邀请新用户注册赠送积分活动 820451
科研通“疑难数据库(出版商)”最低求助积分说明 772054