Instance segmentation of biological images using graph convolutional network

计算机科学 人工智能 分割 模式识别(心理学) 聚类分析 图形 嵌入 图像分割 特征(语言学) 理论计算机科学 语言学 哲学
作者
Rongtao Xu,Ye Li,Changwei Wang,Shibiao Xu,Weiliang Meng,Xiaopeng Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:110: 104739-104739 被引量:31
标识
DOI:10.1016/j.engappai.2022.104739
摘要

Instance segmentation in biological images is an important task in the field of biological images and biomedical analysis. Different from the instance segmentation of natural image scenes, this task is still challenging because there are a large number of overlapping objects with similar appearance as well as great variability in shape, size and texture in the foreground and background. In this paper, we propose a novel method for segmentation of graph-guided instances of biological images, which successfully addresses these peculiarities. Our method predicts the embedding at each pixel and uses clustering to recover instances during testing. Specifically, we design the Graph-guided Feature Fusion Module in response to overlapping instances. Our Graph-guided Feature Fusion Module combines fine deep features and coarse shallow features to learn the affinity matrix, and then uses graph convolutional network to guide the network to learn object-level local features. Next, we devise the Gated Spatial Attention Module to effectively learn key spatial information by introducing a gating mechanism. Furthermore, we give the Cluster Distance Loss that can effectively distinguish foreground objects from similar backgrounds. The effectiveness of our proposed method has been verified on various biological and biomedical datasets. The experimental results show that our method is superior to previous embedding-based instance segmentation methods. The SBD metric for our method reached 90.8% on the plant phenotype dataset (CVPPP), 72.5% on the cell nucleus dataset (DSB2018), and 81.8% on the C.elegans dataset, all achieving state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研应助听风采纳,获得10
1秒前
GMY完成签到,获得积分10
3秒前
韭菜盒子发布了新的文献求助10
3秒前
zs完成签到,获得积分10
3秒前
认真雅阳发布了新的文献求助10
4秒前
空想家完成签到 ,获得积分10
4秒前
科研通AI5应助yyryyrr采纳,获得10
4秒前
顾矜应助一十六采纳,获得10
5秒前
Cecilia完成签到,获得积分10
5秒前
fancyking发布了新的文献求助10
7秒前
8秒前
今后应助韭菜盒子采纳,获得10
9秒前
11秒前
pearl完成签到,获得积分10
11秒前
wzy发布了新的文献求助10
13秒前
认真雅阳完成签到,获得积分10
15秒前
欣喜谷槐完成签到,获得积分10
17秒前
研友_LwlRen完成签到 ,获得积分10
17秒前
jiangcai完成签到,获得积分10
17秒前
一十六发布了新的文献求助10
18秒前
12发布了新的文献求助10
19秒前
24秒前
pearl发布了新的文献求助10
25秒前
小浅笑完成签到,获得积分10
28秒前
30秒前
Rae完成签到,获得积分10
32秒前
打打应助小可乐呀小可乐采纳,获得10
32秒前
科目三应助12采纳,获得10
32秒前
33秒前
一一应助HR112采纳,获得10
33秒前
TT完成签到,获得积分10
34秒前
韭菜盒子发布了新的文献求助10
35秒前
36秒前
奂锐123发布了新的文献求助10
37秒前
慕青应助韭菜盒子采纳,获得10
39秒前
黑马王子完成签到,获得积分10
39秒前
40秒前
jiajia完成签到 ,获得积分10
41秒前
潘宋发布了新的文献求助10
43秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801436
求助须知:如何正确求助?哪些是违规求助? 3347178
关于积分的说明 10332370
捐赠科研通 3063467
什么是DOI,文献DOI怎么找? 1681747
邀请新用户注册赠送积分活动 807681
科研通“疑难数据库(出版商)”最低求助积分说明 763864