Survival prediction on intrahepatic cholangiocarcinoma with histomorphological analysis on the whole slide images

肝内胆管癌 病理 基质 阶段(地层学) 医学 肿瘤微环境 生存分析 癌症 肿瘤科 生物 内科学 免疫组织化学 古生物学
作者
Jiawei Xie,Xiaohong Pu,Jian He,Yudong Qiu,Cheng Lu,Wei Gao,Xiangxue Wang,Haoda Lu,Jiong Shi,Yuemei Xu,Anant Madabhushi,Xiangshan Fan,Jun Chen,Jun Xu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:146: 105520-105520 被引量:16
标识
DOI:10.1016/j.compbiomed.2022.105520
摘要

Intrahepatic cholangiocarcinoma (ICC) is cancer that originates from the liver's secondary ductal epithelium or branch. Due to the lack of early-stage clinical symptoms and very high mortality, the 5-year postoperative survival rate is only about 35%. A critical step to improve patients' survival is accurately predicting their survival status and giving appropriate treatment. The tumor microenvironment of ICC is the immediate environment on which the tumor cell growth depends. The differentiation of tumor glands, the stroma status, and the tumor-infiltrating lymphocytes in such environments are strictly related to the tumor progress. It is crucial to develop a computerized system for characterizing the tumor environment. This work aims to develop the quantitative histomorphological features that describe lymphocyte density distribution at the cell level and the different components at the tumor's tissue level in H&E-stained whole slide images (WSIs). The goal is to explore whether these features could stratify patients' survival. This study comprised of 127 patients diagnosed with ICC after surgery, where 78 cases were randomly chosen as the modeling set, and the rest of the 49 cases were testing set. Deep learning-based models were developed for tissue segmentation and lymphocyte detection in the WSIs. A total of 107-dimensional features, including different type of graph features on the WSIs were extracted by exploring the histomorphological patterns of these identified tumor tissue and lymphocytes. The top 3 discriminative features were chosen with the mRMR algorithm via 5-fold cross-validation to predict the patient's survival. The model's performance was evaluated on the independent testing set, which achieved an AUC of 0.6818 and the log-rank test p-value of 0.03. The Cox multivariable test was used to control the TNM staging, γ-Glutamytransferase, and the Peritumoral Glisson's Sheath Invasion. It showed that our model could independently predict survival risk with a p-value of 0.048 and HR (95% confidence interval) of 2.90 (1.01-8.32). These results indicated that the composition in tissue-level and global arrangement of lymphocytes in the cell-level could distinguish ICC patients' survival risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhhh发布了新的文献求助10
刚刚
刚刚
科研通AI5应助开朗向真采纳,获得10
1秒前
3秒前
3秒前
在水一方应助等待的谷波采纳,获得10
4秒前
QZWX发布了新的文献求助30
5秒前
阿烨完成签到,获得积分10
5秒前
水若琳发布了新的文献求助10
5秒前
正直从波完成签到 ,获得积分10
6秒前
李健应助小熊饼干采纳,获得10
7秒前
wonderwall发布了新的文献求助10
7秒前
跬步一积完成签到,获得积分10
8秒前
张靖超发布了新的文献求助30
8秒前
manforfull完成签到,获得积分10
9秒前
耐得住寂寞关注了科研通微信公众号
11秒前
14秒前
15秒前
15秒前
19秒前
自由雨莲发布了新的文献求助10
19秒前
慕青应助QZWX采纳,获得30
21秒前
21秒前
大模型应助小巧亦竹采纳,获得10
22秒前
谦让月饼完成签到 ,获得积分10
22秒前
有丝分裂吉完成签到,获得积分10
23秒前
25秒前
25秒前
李爱国应助开朗曲奇采纳,获得10
25秒前
27秒前
66668888发布了新的文献求助30
28秒前
水若琳发布了新的文献求助10
29秒前
小高同学完成签到,获得积分10
29秒前
打打应助YXH采纳,获得10
29秒前
hanhan发布了新的文献求助10
30秒前
lkj完成签到,获得积分20
30秒前
30秒前
柚子蟹完成签到,获得积分10
32秒前
Hello应助忽忽采纳,获得10
32秒前
34秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826664
求助须知:如何正确求助?哪些是违规求助? 3368977
关于积分的说明 10453373
捐赠科研通 3088541
什么是DOI,文献DOI怎么找? 1699175
邀请新用户注册赠送积分活动 817281
科研通“疑难数据库(出版商)”最低求助积分说明 770148