传出的
迷走神经电刺激
医学
刺激
迷走神经
内分泌学
内科学
神经刺激
神经科学
生物
传入的
作者
Sophie C. Payne,Glenn M. Ward,James B. Fallon,Tomoko Hyakumura,Johannes B. Prins,Sofianos Andrikopoulos,Richard J. MacIsaac,Joel Villalobos
摘要
Vagus nerve stimulation is emerging as a promising treatment for type 2 diabetes. Here, we evaluated the ability of stimulation of the vagus nerve to reduce glycemia in awake, freely moving metabolically compromised rats. A model of type 2 diabetes (n = 10) was induced using a high-fat diet and low doses of streptozotocin. Stimulation of the abdominal vagus nerve was achieved by pairing 15 Hz pulses on a distal pair of electrodes with high-frequency blocking stimulation (26 kHz, 4 mA) on a proximal pair of electrodes to preferentially produce efferent conducting activity (eVNS). Stimulation was well tolerated in awake, freely moving rats. During 1 h of eVNS, glycemia decreased in 90% of subjects (-1.25 ± 1.25 mM h, p = 0.017), and 2 dB above neural threshold was established as the most effective "dose" of eVNS (p = 0.009). Following 5 weeks of implantation, eVNS was still effective, resulting in significantly decreased glycemia (-1.7 ± 0.6 mM h, p = 0.003) during 1 h of eVNS. There were no overt changes in fascicle area or signs of histopathological damage observed in implanted vagal nerve tissue following chronic implantation and stimulation. Demonstration of the biocompatibility and safety of eVNS in awake, metabolically compromised animals is a critical first step to establishing this therapy for clinical use. With further development, eVNS could be a promising novel therapy for treating type 2 diabetes.
科研通智能强力驱动
Strongly Powered by AbleSci AI