医学
接收机工作特性
人工智能
肺癌
肿瘤科
比例危险模型
生存分析
队列
机器学习
生物标志物
内科学
算法
计算机科学
生物
生物化学
作者
Chengdi Wang,Jiechao Ma,Jun Shao,Shu Zhang,Jingwei Li,Junpeng Yan,Zhehao Zhao,Congchen Bai,Yizhou Yu,Weimin Li
标识
DOI:10.3389/fimmu.2022.828560
摘要
Programmed death-ligand 1 (PD-L1) assessment of lung cancer in immunohistochemical assays was only approved diagnostic biomarker for immunotherapy. But the tumor proportion score (TPS) of PD-L1 was challenging owing to invasive sampling and intertumoral heterogeneity. There was a strong demand for the development of an artificial intelligence (AI) system to measure PD-L1 expression signature (ES) non-invasively.
科研通智能强力驱动
Strongly Powered by AbleSci AI