LE-GAN: Unsupervised low-light image enhancement network using attention module and identity invariant loss

计算机科学 人工智能 不变(物理) 计算机视觉 光场 图像质量 图像增强 模式识别(心理学) 图像(数学) 数学 数学物理
作者
Ying Fu,Yang Hong,Linwei Chen,Shaodi You
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:240: 108010-108010 被引量:72
标识
DOI:10.1016/j.knosys.2021.108010
摘要

Low-light image enhancement aims to recover normal-light images from the images captured under very dim environments. Existing methods cannot well handle the noise, color bias and over-exposure problem, and fail to ensure visual quality when lacking paired training data. To address these problems, we propose a novel unsupervised low-light image enhancement network named LE-GAN, which is based on generative adversarial networks and is trained with unpaired low/normal-light images. Specifically, we design an illumination-aware attention module that enhances the feature extraction of the network to address the problems of noise and color bias, as well as improve the visual quality. We further propose a novel identity invariant loss to address the over-exposure problem to make the network learn to enhance low-light images adaptively. Extensive experiments show that the proposed method can achieve promising results. Furthermore, we collect a large-scale low-light dataset named Paired Normal/Lowlight Images (PNLI). It consists of 2,000 pairs of low/normal-light images captured in various real-world scenes, which can provide the research community with a high-quality dataset to advance the development of this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ff发布了新的文献求助10
1秒前
1秒前
3秒前
沉静龙猫发布了新的文献求助10
3秒前
qqdm完成签到 ,获得积分10
3秒前
何寒松发布了新的文献求助150
4秒前
4秒前
鹅小小完成签到,获得积分10
5秒前
脑洞疼应助陌路孤星采纳,获得10
7秒前
Kongstrue完成签到,获得积分10
7秒前
陈陈陈发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
lei发布了新的文献求助10
10秒前
12秒前
12秒前
13秒前
14秒前
852应助loey采纳,获得100
14秒前
gong发布了新的文献求助10
14秒前
14秒前
科研通AI5应助111采纳,获得10
14秒前
充电宝应助陈陈陈采纳,获得10
14秒前
研友_nvggxZ发布了新的文献求助10
15秒前
李爱国应助可耐的断缘采纳,获得10
15秒前
小手冰凉完成签到 ,获得积分10
15秒前
16秒前
蔺彦丽完成签到,获得积分10
16秒前
两棵大白菜完成签到,获得积分10
16秒前
17秒前
Steve发布了新的文献求助10
18秒前
典雅的静发布了新的文献求助10
20秒前
言言言言发布了新的文献求助10
20秒前
狂野清发布了新的文献求助10
21秒前
Alex应助蔺彦丽采纳,获得30
21秒前
21秒前
22秒前
乌龟娟完成签到,获得积分10
22秒前
22秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808902
求助须知:如何正确求助?哪些是违规求助? 3353550
关于积分的说明 10365988
捐赠科研通 3069804
什么是DOI,文献DOI怎么找? 1685786
邀请新用户注册赠送积分活动 810743
科研通“疑难数据库(出版商)”最低求助积分说明 766304