CEModule: A Computation Efficient Module for Lightweight Convolutional Neural Networks

失败 卷积神经网络 计算机科学 一般化 钥匙(锁) 特征(语言学) 卷积(计算机科学) 计算 人工智能 工作量 过程(计算) 机器学习 模式识别(心理学) 人工神经网络 算法 并行计算 数学 操作系统 数学分析 哲学 语言学 计算机安全
作者
Yu Liang,Maozhen Li,Changjun Jiang,Guanjun Liu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (9): 6069-6080 被引量:27
标识
DOI:10.1109/tnnls.2021.3133127
摘要

Lightweight convolutional neural networks (CNNs) rely heavily on the design of lightweight convolutional modules (LCMs). For an LCM, lightweight design based on repetitive feature maps (LoR) is currently one of the most effective approaches. An LoR mainly involves an extraction of feature maps from convolutional layers (CE) and feature map regeneration through cheap operations (RO). However, existing LoR approaches carry out lightweight improvements only from the aspect of RO but ignore the problems of poor generalization, low stability, and high computation workload incurred in the CE part. To alleviate these problems, this article introduces the concept of key features from a CNN model interpretation perspective. Subsequently, it presents a novel LCM, namely CEModule, focusing on the CE part. CEModule increases the number of key features to maintain a high level of accuracy in classification. In the meantime, CEModule employs a group convolution strategy to reduce floating-point operations (FLOPs) incurred in the training process. Finally, this article brings forth a dynamic adaptation algorithm ( α -DAM) to enhance the generalization of CEModule-enabled lightweight CNN models, including the developed CENet in dealing with datasets of different scales. Compared with the state-of-the-art results, CEModule reduces FLOPs by up to 54% on CIFAR-10 while maintaining a similar level of accuracy in classification. On ImageNet, CENet increases accuracy by 1.2% following the same FLOPs and training strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小李完成签到,获得积分10
1秒前
1秒前
研究僧发布了新的文献求助30
1秒前
1秒前
1秒前
刘娟发布了新的文献求助10
1秒前
愉快的千风完成签到,获得积分10
2秒前
2秒前
星辰大海应助eco采纳,获得10
3秒前
暴躁的惜筠完成签到,获得积分10
3秒前
3秒前
science_explorer完成签到,获得积分10
3秒前
Tin啊呀呀发布了新的文献求助10
4秒前
li发布了新的文献求助10
4秒前
浪费完成签到 ,获得积分10
4秒前
研友_VZG7GZ应助天山海采纳,获得10
5秒前
5秒前
囡囝囿团发布了新的文献求助20
5秒前
6秒前
yangjinlong发布了新的文献求助10
6秒前
ad关闭了ad文献求助
6秒前
wisdom应助优美季节采纳,获得10
6秒前
科研通AI2S应助冰菱采纳,获得10
6秒前
6秒前
CipherSage应助hua采纳,获得10
6秒前
6秒前
共享精神应助优美的觅珍采纳,获得10
7秒前
7秒前
一一发布了新的文献求助10
7秒前
qzp98发布了新的文献求助10
8秒前
8秒前
大个应助义气莫茗采纳,获得10
8秒前
Hello应助wave采纳,获得10
8秒前
wyc发布了新的文献求助10
9秒前
万能图书馆应助风清扬采纳,获得10
9秒前
9秒前
袁成禄发布了新的文献求助10
9秒前
10秒前
鱼鱼鱼完成签到 ,获得积分20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260162
求助须知:如何正确求助?哪些是违规求助? 4421632
关于积分的说明 13763676
捐赠科研通 4295814
什么是DOI,文献DOI怎么找? 2357032
邀请新用户注册赠送积分活动 1353405
关于科研通互助平台的介绍 1314609