CEModule: A Computation Efficient Module for Lightweight Convolutional Neural Networks

失败 卷积神经网络 计算机科学 一般化 钥匙(锁) 特征(语言学) 卷积(计算机科学) 计算 人工智能 工作量 过程(计算) 机器学习 模式识别(心理学) 人工神经网络 算法 并行计算 数学 操作系统 数学分析 哲学 语言学 计算机安全
作者
Yu Liang,Maozhen Li,Changjun Jiang,Guanjun Liu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (9): 6069-6080 被引量:23
标识
DOI:10.1109/tnnls.2021.3133127
摘要

Lightweight convolutional neural networks (CNNs) rely heavily on the design of lightweight convolutional modules (LCMs). For an LCM, lightweight design based on repetitive feature maps (LoR) is currently one of the most effective approaches. An LoR mainly involves an extraction of feature maps from convolutional layers (CE) and feature map regeneration through cheap operations (RO). However, existing LoR approaches carry out lightweight improvements only from the aspect of RO but ignore the problems of poor generalization, low stability, and high computation workload incurred in the CE part. To alleviate these problems, this article introduces the concept of key features from a CNN model interpretation perspective. Subsequently, it presents a novel LCM, namely CEModule, focusing on the CE part. CEModule increases the number of key features to maintain a high level of accuracy in classification. In the meantime, CEModule employs a group convolution strategy to reduce floating-point operations (FLOPs) incurred in the training process. Finally, this article brings forth a dynamic adaptation algorithm ( α -DAM) to enhance the generalization of CEModule-enabled lightweight CNN models, including the developed CENet in dealing with datasets of different scales. Compared with the state-of-the-art results, CEModule reduces FLOPs by up to 54% on CIFAR-10 while maintaining a similar level of accuracy in classification. On ImageNet, CENet increases accuracy by 1.2% following the same FLOPs and training strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
chen应助禾禾采纳,获得40
3秒前
4秒前
yaya完成签到,获得积分10
5秒前
科研通AI5应助yy采纳,获得10
6秒前
研友_nPKbNL完成签到,获得积分10
7秒前
咖啡发布了新的文献求助10
7秒前
kryptonite完成签到 ,获得积分10
9秒前
10秒前
11秒前
积极的绫完成签到 ,获得积分20
11秒前
脑洞疼应助Tzzl0226采纳,获得10
12秒前
牙瓜完成签到 ,获得积分10
12秒前
hHHhHg完成签到,获得积分20
14秒前
花啊拾肆发布了新的文献求助10
14秒前
元元发布了新的文献求助20
17秒前
筱噺完成签到,获得积分10
18秒前
18秒前
大个应助Harley采纳,获得10
19秒前
19秒前
21秒前
花啊拾肆完成签到,获得积分10
22秒前
天想月完成签到,获得积分10
22秒前
hzhang0807发布了新的文献求助10
23秒前
李健应助壮观寒荷采纳,获得10
24秒前
Nowind完成签到,获得积分10
24秒前
HEIKU应助yyx采纳,获得10
24秒前
爆米花应助静好采纳,获得10
26秒前
26秒前
huiseXT完成签到,获得积分10
28秒前
28秒前
文静的夜澄完成签到,获得积分20
30秒前
Tzzl0226发布了新的文献求助10
31秒前
pan完成签到,获得积分10
32秒前
王sir完成签到,获得积分10
37秒前
复杂的兔子完成签到,获得积分10
37秒前
39秒前
阿呷惹完成签到 ,获得积分10
40秒前
44秒前
袁震的爹爹完成签到,获得积分10
44秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812639
求助须知:如何正确求助?哪些是违规求助? 3357159
关于积分的说明 10385273
捐赠科研通 3074338
什么是DOI,文献DOI怎么找? 1688722
邀请新用户注册赠送积分活动 812320
科研通“疑难数据库(出版商)”最低求助积分说明 766986