Forecasting Greenhouse Gas Emissions Based on Different Machine Learning Algorithms

温室气体 人工神经网络 算法 机器学习 温室 支持向量机 环境科学 人工智能 工程类 计算机科学 生态学 生物 园艺
作者
İlayda Ülkü,Eyüp Emre Ülkü
出处
期刊:Lecture notes in networks and systems 卷期号:: 109-116 被引量:3
标识
DOI:10.1007/978-3-031-09176-6_13
摘要

With the increase in greenhouse gas emissions, climate change is occurring in the atmosphere. Although the energy production for Turkey is increased at a high rate, the greenhouse gas emissions are still high currently. Problems that seem to be very complex can be predicted with different algorithms without difficulty. Due to fact that artificial intelligence is often included in the studies to evaluate the solution performance and make comparisons with the obtained solutions. In this study, machine learning algorithms are used to compare and predict greenhouse gas emissions. Carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4), and fluorinated gases (F-gases) are considered direct greenhouse gases originating from the agriculture and waste sectors, energy, industrial processes, and product use, within the scope of greenhouse gas emission statistics. Compared to different machine learning methods, support vector machines can be considered an advantageous estimation method since they can generalize more details. On the other hand, the artificial neural network algorithm is one of the most commonly used machine learning algorithms in terms of classification, optimization, estimation, regression, and pattern tracking. From this point of view, this study aims to predict greenhouse gas emissions using artificial neural network algorithms and support vector machines by estimating CO2, CH4, N2O, and F-gases from greenhouse gases. The data set was obtained from the Turkish Statistical Institute and the years are included between 1990 and 2019. All analyzes were performed using MATLAB version 2019b software.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
冰阔罗完成签到,获得积分10
刚刚
冷艳的又蓝完成签到 ,获得积分10
刚刚
1秒前
1秒前
2秒前
雪饼完成签到 ,获得积分10
2秒前
2秒前
3秒前
脑洞疼应助失眠台灯采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
shen应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得30
3秒前
慕青应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
范苏茂完成签到,获得积分20
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
4秒前
huohuo发布了新的文献求助10
4秒前
4秒前
打打应助科研通管家采纳,获得10
4秒前
4秒前
shen应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
5秒前
zzq完成签到,获得积分10
6秒前
浮游应助dabaigou采纳,获得10
6秒前
汉堡包应助坚强铸海采纳,获得10
6秒前
yaoyh_gc发布了新的文献求助10
7秒前
eve发布了新的文献求助10
7秒前
麻麻薯完成签到 ,获得积分10
7秒前
范苏茂发布了新的文献求助10
8秒前
8秒前
lilianan发布了新的文献求助10
9秒前
高震博完成签到 ,获得积分10
10秒前
arui发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5317724
求助须知:如何正确求助?哪些是违规求助? 4460181
关于积分的说明 13877586
捐赠科研通 4350428
什么是DOI,文献DOI怎么找? 2389384
邀请新用户注册赠送积分活动 1383548
关于科研通互助平台的介绍 1352951