温室气体
人工神经网络
算法
机器学习
温室
支持向量机
环境科学
人工智能
工程类
计算机科学
生态学
生物
园艺
作者
İlayda Ülkü,Eyüp Emre Ülkü
出处
期刊:Lecture notes in networks and systems
日期:2022-01-01
卷期号:: 109-116
被引量:3
标识
DOI:10.1007/978-3-031-09176-6_13
摘要
With the increase in greenhouse gas emissions, climate change is occurring in the atmosphere. Although the energy production for Turkey is increased at a high rate, the greenhouse gas emissions are still high currently. Problems that seem to be very complex can be predicted with different algorithms without difficulty. Due to fact that artificial intelligence is often included in the studies to evaluate the solution performance and make comparisons with the obtained solutions. In this study, machine learning algorithms are used to compare and predict greenhouse gas emissions. Carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4), and fluorinated gases (F-gases) are considered direct greenhouse gases originating from the agriculture and waste sectors, energy, industrial processes, and product use, within the scope of greenhouse gas emission statistics. Compared to different machine learning methods, support vector machines can be considered an advantageous estimation method since they can generalize more details. On the other hand, the artificial neural network algorithm is one of the most commonly used machine learning algorithms in terms of classification, optimization, estimation, regression, and pattern tracking. From this point of view, this study aims to predict greenhouse gas emissions using artificial neural network algorithms and support vector machines by estimating CO2, CH4, N2O, and F-gases from greenhouse gases. The data set was obtained from the Turkish Statistical Institute and the years are included between 1990 and 2019. All analyzes were performed using MATLAB version 2019b software.
科研通智能强力驱动
Strongly Powered by AbleSci AI