Citrus greening disease recognition algorithm based on classification network using TRL-GAN

果园 生物 树(集合论) 人工智能 园艺 数学 计算机科学 数学分析
作者
Deqin Xiao,Ruilin Zeng,Youfu Liu,Yigui Huang,Junbing Liu,Jianzhao Feng,Xinglong Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:200: 107206-107206 被引量:19
标识
DOI:10.1016/j.compag.2022.107206
摘要

The monitoring and prevention and control of citrus yellow dragon disease is a significant measure to ensure citrus production. If yellow dragon disease appears in citrus orchards, it will cause root rot, fruit deformation and wilting of fruit trees, which will eventually spread to every fruit tree in the whole orchard and cause the death of fruit trees, so it is very meaningful to detect the symptoms of citrus yellow dragon disease early and take appropriate treatment and prevention measures. Pratically, the orchard owner will remove the corresponding fruit trees as soon as they are found to be infected with Huanglong disease, so that it is extremely problematic to obtain a large number of Huanglong disease leaf data. Meanwhile, due to the uncertainty of the pathological trait distribution of citrus yellow dragon disease leaves and the extreme shortage of data, the convolutional neural network model learned in a small number of samples is not capable of generalization. In order to improve the accuracy and generalization of Citrus Greening Disease recognition algorithm, this paper introduces Texture Reconstruction Loss CycleGAN(TRL-GAN) to generate citrus diseased leaf data in realistic scene to increase the richness of samples, and thus proposes the Recognizing Citrus Greening Based on TRL-GAN(RCG TRL-GAN). This algorithm firstly performs background culling by using the instance segmentation network Mask RCNN for realistic scenes citrus yellow dragon disease mottled, zinc deficiency, magnesium deficiency, leaf veins yellowing and other corresponding symptomatic leaves, then introduces texture reconstruction loss improvement CycleGAN as training and migrates the diseased leaf style to ordinary green leaves for data expansion, and finally uses the expanded dataset to train the convolutional neural network. Experimental results on the constructed dataset of 4516 images (762 mottled, 749 Zn deficient, 737 Mg deficient, 721 Vein yellowing, 783 Diachyma yellowing, 764 green leaves) reveal that TRL-GAN has 13.49% and 1.1% improvement in FID and KID, respectively, relative to the original structure CycleGAN, and has been identified by six citrus yellow dragon disease experts and three vision professionals identify that the fake data generated by TRL-GAN have similarity with the leaf pathological characteristics and real data, and also by using T-SNE technique it is observed that the real data have similar distribution with the generated fake data in two-dimensional plane. Meanwhile, the more outstanding accuracy performance in the classification network is ResNeXt101 with 97.45% accuracy, and the average accuracy of RCG TRL-GAN technique in the recognition of classification network is improved 2.76%. The study proves that the RCG TRL-GAN effectively improves the citrus greening disease phenotype data generation and recognition, and can provide method reference for the expansion and recognition of complex plant disease phenotype images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
serendipity完成签到,获得积分10
1秒前
1秒前
Ava应助七七采纳,获得10
2秒前
fx发布了新的文献求助10
2秒前
田所浩二发布了新的文献求助10
2秒前
3秒前
Meng完成签到 ,获得积分10
4秒前
遠山完成签到,获得积分10
4秒前
小高发布了新的文献求助10
4秒前
哎呀哎呀呀完成签到,获得积分10
5秒前
KK关注了科研通微信公众号
5秒前
云海老发布了新的文献求助10
5秒前
深情安青应助香蕉初瑶采纳,获得10
5秒前
你好纠结伦完成签到,获得积分10
5秒前
miaomiao_ma完成签到,获得积分10
5秒前
老六完成签到,获得积分10
6秒前
miaomiao完成签到,获得积分10
6秒前
rosestar发布了新的文献求助10
6秒前
6秒前
鼻涕泡发布了新的文献求助10
6秒前
lingo完成签到 ,获得积分10
7秒前
7秒前
传奇3应助徐若楠采纳,获得10
9秒前
清晾油完成签到,获得积分10
9秒前
丘比特应助家养浩采纳,获得10
9秒前
田所浩二完成签到,获得积分10
9秒前
沉默士萧发布了新的文献求助10
10秒前
Mmxn应助失眠的友卉采纳,获得10
10秒前
10秒前
科研通AI5应助英俊延恶采纳,获得10
11秒前
ccc完成签到,获得积分10
11秒前
Cytosol完成签到,获得积分10
12秒前
爱飞的鱼完成签到,获得积分10
13秒前
13秒前
13秒前
翟煜完成签到 ,获得积分10
13秒前
小胖卷毛完成签到,获得积分10
13秒前
科研助手6应助yixi采纳,获得30
13秒前
13秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816810
求助须知:如何正确求助?哪些是违规求助? 3360247
关于积分的说明 10407179
捐赠科研通 3078205
什么是DOI,文献DOI怎么找? 1690660
邀请新用户注册赠送积分活动 813983
科研通“疑难数据库(出版商)”最低求助积分说明 767924