已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Physics-Constrained Data-Driven Workflow for Predicting Coalbed Methane Well Production Using Artificial Neural Network

煤层气 人工神经网络 工作流程 计算机科学 油藏计算 循环神经网络 生产(经济) 地铁列车时刻表 数据挖掘 人工智能 工程类 宏观经济学 操作系统 经济 煤矿开采 废物管理 数据库
作者
Ruiyue Yang,Xiaozhou Qin,Wei Liu,Zhongwei Huang,Yu Shi,Zhaoyu Pang,Yiqun Zhang,Jingbin Li,Tianyu Wang
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:27 (03): 1531-1552 被引量:41
标识
DOI:10.2118/205903-pa
摘要

Summary Coalbed methane (CBM) has emerged as one of the clean unconventional resources to supplement the rising demand of oil and gas. Analyzing and predicting CBM production performance are critical in choosing the optimal completion methods and parameters. However, the conventional numerical simulation has challenges of complicated gridding issues and expensive computational costs. The huge amount of available production data that has been collected in the field site opens up a new opportunity to develop data-driven approaches in predicting the production rate. Here, we proposed a novel physics-constrained data-driven workflow to effectively forecast the CBM productivity based on a gated recurrent unit (GRU) and multilayer perceptron (MLP) combined neural network (GRU-MLP model). The model architecture is optimized automatically by the multiobjective algorithm: nondominated sorting genetic algorithm Ⅱ (NSGA Ⅱ). The proposed framework was used to predict gas and water production in synthetic cases with various fracture-network-complexity/connectivity and two multistage fractured horizontal wells in field sites located at Ordos Basin and Qinshui Basin, China. The results indicated that the proposed GRU-MLP combined neural network was able to accurately and stably predict the production performance of CBM fractured wells in a fast manner. Compared with recurrent neural network (RNN), GRU, and long short-term memory (LSTM), the proposed GRU-MLP had the highest accuracy, stability, and generalization, especially in the peak or trough and late-time production periods, because it could capture the production-variation trends precisely under the static and dynamic physical constraints. Consequently, a physics-constrained data-driven approach performed better than a pure data-driven method. Moreover, the contributions of constraints affecting the model prediction performance were clarified, which could provide insights for the practicing engineers to choose which categorical constraints are needed to focus on and preferentially treated if there are uncertainties and unknowns in a realistic reservoir. In addition, the optimum GRU-MLP model architecture was a group of optimized solutions, rather than a single solution. Engineers can evaluate the tradeoffs within this optimal set according to the field-site requirements. This study provides a novel machine learning approach based on a GRU-MLP combined neural network to estimate production performances in naturally fractured reservoir. The method is gridless and simple, but is capable of predicting the productivity in a computational cost-effective way. The key findings of this work are expected to provide a theoretical guidance for the intelligent development in oil and gas industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wearelulu完成签到,获得积分10
2秒前
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
shi hui应助科研通管家采纳,获得10
4秒前
kaka发布了新的文献求助10
4秒前
罗莹完成签到 ,获得积分10
5秒前
5秒前
君寻完成签到 ,获得积分10
8秒前
Lionnn完成签到 ,获得积分10
9秒前
9秒前
丰富老五发布了新的文献求助10
10秒前
chang完成签到,获得积分10
10秒前
11秒前
12秒前
没有查不到的文献完成签到 ,获得积分10
13秒前
小蘑菇应助Wcy采纳,获得10
13秒前
13秒前
打打应助沉默的可乐采纳,获得10
16秒前
麻辣香锅发布了新的文献求助10
16秒前
llllll发布了新的文献求助10
16秒前
山水之乐发布了新的文献求助10
17秒前
NMD发布了新的文献求助60
18秒前
领导范儿应助健壮小天鹅采纳,获得10
18秒前
19秒前
Skywalker完成签到,获得积分10
20秒前
科研通AI6应助mbf采纳,获得10
21秒前
21秒前
23秒前
24秒前
魏魏发布了新的文献求助10
25秒前
dqbhxwx发布了新的文献求助10
25秒前
xiaolei完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554554
求助须知:如何正确求助?哪些是违规求助? 4639188
关于积分的说明 14655312
捐赠科研通 4580962
什么是DOI,文献DOI怎么找? 2512518
邀请新用户注册赠送积分活动 1487314
关于科研通互助平台的介绍 1458175