Computation offloading in mobile edge computing networks: A survey

计算机科学 计算卸载 Lyapunov优化 移动边缘计算 马尔可夫决策过程 分布式计算 边缘计算 服务器 计算机网络 GSM演进的增强数据速率 马尔可夫过程 人工智能 统计 李雅普诺夫指数 Lyapunov重新设计 混乱的 数学
作者
Chuan Feng,Pengchao Han,Xu Zhang,Bowen Yang,Yejun Liu,Lei Guo
出处
期刊:Journal of Network and Computer Applications [Elsevier]
卷期号:202: 103366-103366 被引量:186
标识
DOI:10.1016/j.jnca.2022.103366
摘要

Computation offloading is one of the key technologies in Mobile Edge Computing (MEC), which makes up for the deficiencies of mobile devices in terms of storage resource, computing capacity, and energy efficiency. On one hand, computation offloading of task requests not only relieves the communication pressure on the core networks but also reduces the delay caused by long-distance data transmission. On the other hand, emerging applications in 5/6G also rely on the computation offloading technology for efficient service provisioning to users. At present, the industry and academia have conducted a lot of researches on the computation offloading methods in MEC networks with a diversity of meaningful techniques and approaches. In this paper, we present a comprehensive survey of the computation offloading in MEC networks including applications, offloading objectives, and offloading approaches. Particularly, we discuss key issues on various offloading objectives, including delay minimization, energy consumption minimization, revenue maximization, and system utility maximization. The approaches to achieve these objectives mainly include mathematical solver, heuristic algorithms, Lyapunov optimization, game theory, and Markov Decision Process (MDP) and Reinforcement Learning (RL). We compare the approaches by characterizing their pros and cons as well as targeting applications. Finally, from the four aspects of subtasks dependency and online task requests, server selection, real-time environment perception, and security, we analyze the current challenges and future directions of computation offloading in MEC networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
天生圣人完成签到,获得积分10
1秒前
1秒前
小二郎应助清子采纳,获得10
1秒前
2秒前
2秒前
2秒前
123发布了新的文献求助10
2秒前
2秒前
机智的瑀发布了新的文献求助10
3秒前
Darline完成签到 ,获得积分10
3秒前
4秒前
5秒前
5秒前
Cssss完成签到,获得积分10
5秒前
轻松博超发布了新的文献求助10
5秒前
5秒前
动听的囧完成签到,获得积分10
5秒前
Ayan完成签到,获得积分10
6秒前
烂漫成仁完成签到,获得积分10
6秒前
XuZ发布了新的文献求助200
6秒前
梦璃发布了新的文献求助10
6秒前
6秒前
6秒前
潘辉发布了新的文献求助10
6秒前
6秒前
yourenpkma123完成签到,获得积分10
7秒前
大方荷花发布了新的文献求助10
7秒前
7秒前
闫诺完成签到,获得积分10
7秒前
8秒前
8秒前
正直灰狼完成签到,获得积分10
9秒前
enen发布了新的文献求助10
9秒前
123完成签到,获得积分10
9秒前
9秒前
Momomo应助zzzy采纳,获得10
10秒前
10秒前
yetong发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477701
求助须知:如何正确求助?哪些是违规求助? 4579485
关于积分的说明 14369133
捐赠科研通 4507697
什么是DOI,文献DOI怎么找? 2470120
邀请新用户注册赠送积分活动 1457068
关于科研通互助平台的介绍 1431055