清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Reinforcement Learning Enhanced Greedy Algorithm for Online Scheduling of Batched Tasks in Cloud in Cloud HPC Systems

计算机科学 云计算 服务器 强化学习 调度(生产过程) 贪婪算法 任务(项目管理) 作业车间调度 分布式计算 算法 人工智能 操作系统 数学优化 计算机网络 数学 布线(电子设计自动化) 管理 经济
作者
Yuanhao Yang,Hong Shen
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:8
标识
DOI:10.1109/tpds.2021.3138459
摘要

In a large cloud data center HPC system, a critical problem is how to allocate the submitted tasks to heterogenous servers for achieving the goal of maximize systems net gain defined as the value of completed tasks minus system operation cost. We consider this problem in the online setting that tasks arrive in batches and propose a novel deep reinforcement learning (DRL) enhanced greedy algorithm of two-stage scheduling interacting task sequencing and task allocation. For task sequencing we deploy a DRL module to make prediction for the best allocation sequence for each arriving batch of tasks based on knowledge (allocation strategies) learnt from prior batches. For task allocation, we propose a greedy strategy that allocates tasks to servers one by one online following the allocation sequence to maximally increase the total gain. We show that our greedy strategy has a performance guarantee of competitive ratio 1/(1+k) to the optimal offline solution, which improves the existing result for the same problem, where k is upper bounded by the maximum cost-to-gain ratio of each task. While our DRL module enhances the greedy by providing the likely-optimal allocation sequence for each batch of arriving tasks, our greedy strategy bounds DRLs prediction error within a proven performance guarantee for any allocation sequence, enabling a better solution quality than that obtainable from both DRL and greedy optimization alone. Extensive experiment evaluation results in both simulation and real application environments demonstrate the effectiveness and efficiency of our proposed algorithm. Compared with the state-of-the-art baselines, our algorithm increases the system gain by about 10% to 30%. Our algorithm provides an interesting example of joining machine-learning and greedy optimization techniques to improve ML-based solutions with a worst-case performance guarantee for solving hard optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助彩色的芷容采纳,获得10
6秒前
Lz555完成签到 ,获得积分10
9秒前
15秒前
18秒前
26秒前
你不知道完成签到 ,获得积分10
27秒前
33秒前
37秒前
量子星尘发布了新的文献求助10
40秒前
47秒前
稻子完成签到 ,获得积分10
48秒前
52秒前
1分钟前
阿瑞完成签到 ,获得积分10
1分钟前
番茄小超人2号完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
合适醉蝶完成签到 ,获得积分10
1分钟前
1分钟前
生信小菜鸟完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
Jasmineyfz完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Blaseaka完成签到 ,获得积分10
1分钟前
water完成签到,获得积分10
1分钟前
Wilson完成签到 ,获得积分10
2分钟前
2分钟前
hoongyan完成签到 ,获得积分10
2分钟前
孟寐以求完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
轻松元绿完成签到 ,获得积分10
2分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
The Psychology of Advertising (5th edition) 500
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3865751
求助须知:如何正确求助?哪些是违规求助? 3408356
关于积分的说明 10657160
捐赠科研通 3132337
什么是DOI,文献DOI怎么找? 1727549
邀请新用户注册赠送积分活动 832351
科研通“疑难数据库(出版商)”最低求助积分说明 780242