材料科学
阴极
插层(化学)
碱金属
化学工程
氧化还原
过渡金属
扩散
无机化学
物理化学
催化作用
热力学
冶金
化学
生物化学
物理
有机化学
工程类
作者
Yunxiang Zhao,Shuquan Liang,Xiaodong Shi,Yongqiang Yang,Yan Tang,Bingan Lu,Jiang Zhou
标识
DOI:10.1002/adfm.202203819
摘要
Abstract Layer‐structured metal vanadates have attracted extensive attention as cathode materials due to multi‐electron redox reactions and versatile cations storage capability. Nevertheless, their actual promotion is still hindered by the sluggish reaction kinetics and inferior phase transition upon repeated cations (de)intercalation. Here, large‐sized NH 4 + is introduced into the K‐site of K 0.43 (NH 4 ) 0.12 V 2 O 5– δ to enable more kinetically favorable oxygen vacancies. The reinforced structure ensures complete solid‐solution phase transition and buffers the dramatic structural change upon potassium storage. The stable presence of NH 4 + as pillars during cycling is also confirmed. Meanwhile, the oxygen vacancies induced by alkali‐site substitution can facilitate ion diffusion and enhance the electronic conductivity, as further demonstrated by theoretical calculations. Therefore, it exhibits a high capacity of 117.8 mA g −1 at 20 mA g −1 with smooth profiles and superior capacity retention of 92.5% after 800 cycles at 1000 mA g −1 . Such an effective synergetic strategy also promotes its zinc storage capability, which performs negligible self‐discharge behavior and retains a reversible capacity of 216.8 mAh g −1 after 3000 cycles at 10 A g −1 . This synergetic strategy may provide novel perspectives to develop layer‐structured cathode and facilitate its practical application in energy storage devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI