Automatic livestock body measurement based on keypoint detection with multiple depth cameras

点云 人工智能 计算机科学 RGB颜色模型 数学 计算机视觉
作者
Ao Du,Hao Guo,Jie Lü,Yang Su,Qin Ma,Alexey Ruchay,Francesco Marinello,Andrea Pezzuolo
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:198: 107059-107059 被引量:44
标识
DOI:10.1016/j.compag.2022.107059
摘要

The body measurement of livestock is an important task in precision livestock farming. To reduce the cost of manual measurement, an increasing number of studies have proposed non-contact body measurement methods using depth cameras. However, these methods only use 3D data to construct geometric features for body measurements, which is prone to error on incomplete and noisy point clouds. This paper introduces a 2D-3D fusion body measurement method, developed in order to exploit the potential of raw scanned data including high-resolution RGB images and 3D spatial information. The keypoints for body measurement are detected on RGB images with a deep learning model. Then these keypoints are projected onto the surface of livestock point clouds by utilizing the intrinsic parameters of the camera. Combining the process of interpolation and the pose normalization method, 9 body measurements of cattle and 5 body measurements of pig (including body lengths, body widths, body heights, and heart girth) are measured. To verify the feasibility of this method, the experiments are performed on 103 cattle data and 13 pig data. Compared with manual measurements, the MAPEs (mean absolute percentage errors) of 5 cattle body measurements and 1 pig body measurement are reduced to less than 10%. Body widths are more susceptible to non-standard posture. The MAPEs of 2 cattle body widths are larger than 20% and the MAPE of 1 pig body width reaches 30%. In comparison with a previous girth measurement method, the presented method is more accurate and robust for the cattle dataset. The same approach can be adapted and implemented for non-contact body measurement for different livestock species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助uone采纳,获得10
1秒前
pwang_ecust完成签到,获得积分10
2秒前
芙瑞完成签到 ,获得积分10
2秒前
猪猪hero发布了新的文献求助30
3秒前
cxlhzq完成签到,获得积分10
5秒前
h w wang完成签到,获得积分10
5秒前
qsc给qsc的求助进行了留言
6秒前
睡到人间煮饭时完成签到 ,获得积分10
7秒前
染墨完成签到,获得积分10
8秒前
shlw完成签到,获得积分10
11秒前
呐呐呐完成签到 ,获得积分10
12秒前
龙在天涯完成签到,获得积分0
12秒前
橙子abcy完成签到,获得积分10
13秒前
Zhangll完成签到,获得积分10
13秒前
英俊的铭应助猪猪hero采纳,获得10
13秒前
可靠小凝完成签到 ,获得积分10
14秒前
轩辕一笑完成签到,获得积分10
15秒前
Solar energy发布了新的文献求助10
16秒前
娇气的天亦完成签到,获得积分10
16秒前
jin1233完成签到 ,获得积分10
16秒前
ke科研小白完成签到,获得积分10
17秒前
巴山郎完成签到,获得积分10
18秒前
青桔完成签到,获得积分10
19秒前
好好完成签到,获得积分10
19秒前
19秒前
笨笨西装完成签到,获得积分10
21秒前
我爱康康文献完成签到 ,获得积分10
21秒前
lz完成签到,获得积分10
23秒前
猪猪hero发布了新的文献求助10
25秒前
Solar energy完成签到,获得积分10
27秒前
28秒前
耍酷的梦桃完成签到,获得积分10
29秒前
王天天完成签到 ,获得积分10
29秒前
Sindy完成签到,获得积分10
30秒前
丰富的硬币完成签到,获得积分10
31秒前
kkk完成签到 ,获得积分10
33秒前
东风完成签到,获得积分10
34秒前
ding7862完成签到,获得积分10
35秒前
猪猪hero完成签到,获得积分10
37秒前
en完成签到,获得积分10
37秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840885
求助须知:如何正确求助?哪些是违规求助? 3382790
关于积分的说明 10526580
捐赠科研通 3102659
什么是DOI,文献DOI怎么找? 1708933
邀请新用户注册赠送积分活动 822781
科研通“疑难数据库(出版商)”最低求助积分说明 773632